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Summary 
 
This chapter presents the essential concepts of continuum mechanics – starting from the 
basic notion of deformation kinematics and progressing to a sketch of constitutive 
behavior of simple materials. We intend neither to develop it with the mathematical 
sophistication used in the different topics related to this subject nor to develop every 
mathematical tool. On the contrary, we try to put in words the ideas behind this analysis 
as an initial approximation prior to further reading. This chapter is a general overview 
of the topic, an outline that covers the main and basic ideas. Our attempt is to develop a 
pedagogical approach accessible to a wide audience by introducing at every step the 
necessary mathematical machinery in conjunction with a physical interpretation. The 
purpose is neither to go deeply into the different areas involved nor to fully develop 
every concept and all mathematical tools associated with continuum mechanics. This 
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treatment assumes a working knowledge of vector and tensor notation, tensor calculus, 
and basic mechanics. 
 
1. Preliminary Concepts: Definition and Theoretical Framework 
 
Continuum Mechanics analyzes material bodies that undergo changes in motions and 
deformations when these bodies are subjected to loading. In particular, material bodies 
are solids, liquids and gases. By loading we consider in this preliminary definition any 
particular effect on the material body under study that changes its status and/or position. 
For example, this could be a change in temperature, an applied force, etc. 
 
The atomic nature of the body is ignored and therefore it is assumed that the body can 
be infinitely divided obtaining in each partition the same body, i.e. the body is 
considered to be a continuous distribution of matter in space. Hence, the length scale 
involved in the continuum analysis is much longer than that associated with the analysis 
of atoms.  
 
To deal with a material body mathematically, a body B  in the continuum mechanics 
setting is taken as a set whose elements can be put into one-to-one correspondence with 
points of a region in three-dimensional Euclidean point space (more precisely, a body 
can be defined in term of what is known as a Borel set). The elements of the material 
body B  are called material points or particles and the specification of the position of all 
particles of B  with respect to a coordinate system at a particular time is called a 
configuration of the material body –a three dimensional picture of the body taken at a 
particular instant of time. Bodies are classified as either deformable or rigid. In the latter 
case, material points cannot move relative to each other under the action of loads, so 
that only translations and rotations of the body are possible. In contrast, material points 
of a deformable body can move relative to each other under the action of loading. 
Continuum mechanics is the study of deformable bodies. 
 
The body moves in time so, in other words, the configuration of the body changes with 
time. The motion (and deformation) of the material body occurs in the four-dimensional 
space-time and the theoretical framework to which this analysis will be restricted here is 
classical mechanics, i.e., the Newtonian space-time framework. This means basically 
that at each instant of time, there corresponds one and only one configuration of the 
body. Since a unique configuration of the body is associated with each instant of time, 
the family of configurations gives the motion of the body.  
 
Section 2 of this chapter  is concerned with kinematics, which is a geometrical analysis 
of the body during its deformation and motion. No attention is given to the causes of 
that motion or the mechanical properties of the body. The motion of the body is just the 
continuous sequence of configurations in time. The change of configurations is viewed 
as the displacement of the body. A motion is called rigid when the distance between any 
two particles of the body does not change with time. The most general rigid motion or 
rigid-body displacement consists of simultaneous translation and rotation of the body. 
The Lagrangian/material and the Eulerian/spatial descriptions are analyzed. 
 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

CONTINUUM MECHANICS – General Overview of Continuum Mechanics – Jose Merodio and Anthony D.Rosato 

©Encyclopedia of Life Support Systems (EOLSS) 

Section 3 deals with balance laws including the first and second law of 
thermodynamics. For reference, Section 3.5 summarizes the number of equations and 
number of unknown fields in both Lagrangian and Eulerian description of a continuum 
problem. 
 
The last section is a brief discourse on constitutive relations for solids and fluids mainly 
under isothermal processes. Nevertheless, in Section 4.1 basic principles that have to be 
obeyed by a constitutive relation are introduced .  Key concepts regarding the behavior 
of a material model are explained. This gives rise to the thermo-mechanical behavior of 
a material. As a result the more general constitutive model is explained. The local 
constitutive theory which gives rise to the so called simple materials is presented.  This 
section  (4.1) is written in a self-contained manner,  and the reader could skip these 
more advanced developments and focus on the next sections  in which descriptions of 
well-known material models are given. Section 4.2 focuses on elastic solids while 
Section 4.3 focuses on fluids. Both sections consider isothermal processes. The formal 
formulation of an initial boundary value problem is presented. 
 
2. Kinematics of Deformation 
 
2.1. The Continuum Setting: Mathematical Description 
 
In order to describe the motion and deformation of a material body the concept of frame 
of reference or observer is needed since it is an observer who captures the motion, i.e. 
the sequence of configurations.  
 
A body B  is referenced to a set of material points or particles which can be assigned 
coordinate labels with respect to an orthonormal basis in Euclidean space E . The 
position of all the material points at a particular time defines the so called configuration 
of the body. Therefore, the configuration of a body is identified with a region in a three 
dimensional Euclidean space relative to an observer. It is convenient to choose a 
particular configuration as  the reference  and to identify that frame as the reference 
configuration of the material body (one can imagine that this is the body position at time 
equal to zero or the undeformed configuration). A current configuration is considered to 
be the body position at the current time (or the deformed configuration). It is clear that 
each configuration needs a coordinate system to describe the geometrical structure of 
the physical body at that particular instant of time. Nevertheless, while the reference 
configuration is defined by means of a reference coordinate system, the current 
configuration is defined by means of the current coordinate system. Therefore, this 
current coordinate system is used to specify all deformed configurations. 
 
In a mathematical way we could say the following. Let B  denote an abstract body and 
P∈B  a typical material particle belonging to the body. Furthermore, let ( )rK B  and 

( )tK B  denote the reference and current placements of the body in Euclidean space, 
respectively. Here rK  and tK  are one-to-one mappings from B  into the reference and 
current placements. Let X , with Cartesian components ( ), 1, 2,3iX i∈  with respect to 

the basis { }1 2 3, ,E E E  denote the typical position vector of a material particle in the 
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reference configuration ( )rK B  of the body, and let x , with components ( ), 1, 2,3ix i∈ , 

with respect to the basis { }1 2 3, ,e e e  denote the corresponding position vector of the 

same particle in the deformed configuration ( )tK B  at time t . It is usual to avoid 
cumbersome notation by respectively denoting the reference and current configurations 
by rB  (or simply B ) and tB . Similarly, it is customary to suppose that the reference 
and current coordinate axes use only one basis. This is shown in Figure 1 where 
{ }1 2 3, ,e e e is the basis. The reference configuration coordinates X  are called material 
coordinates and are identified with material points of the body. The coordinates x  of 
the so called current configuration or also the deformed configuration are denoted as 
spatial coordinates, and assign to material points X  places in space at a particular time. 
It is clear then that motion means that material particles change their locations in time. It 
is important to remark that while material coordinates are only used with the reference 
configuration, spatial coordinates are used for all other configurations. 
 
Distinct material points must be mapped to distinct spatial points in order for the 
deformation to be physically plausible. In other words, different material points cannot 
occupy (at time t) the same physical location. It follows that there exists a mapping χ  
which assigns to each point X  just one point x  at each instant t , i.e. there exists 

( ), t=x χ X . The mapping χ  depends on rK , but for the sake of simplicity of notation, 

rK  is not usually used as a suffix. 

 
Figure 1. Displacement of a material point :  →u X x . B  denotes the body in the 

reference (or undeformed) state and tB  is the body at time t. 
 
Mathematically speaking, the mapping (or motion) χ  must be one-to-one (the mapping 
( ), tχ X   is one-to-one if  1 2 1 2( , ) ( , ) ,t t≠ ∀ ∈χ X χ X X X B  such that  1 2≠X X ) and onto, 

i.e. it is assumed that this mapping is continuously differentiable and it has a 
continuously differentiable inverse (the physical interpretation is that the body does not 
trespass itself), ( )1 , t−=X χ x  . This will be true if and only if, for all material points  
∈X B  and  0t ≥ ,  

 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

CONTINUUM MECHANICS – General Overview of Continuum Mechanics – Jose Merodio and Anthony D.Rosato 

©Encyclopedia of Life Support Systems (EOLSS) 

( )
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( , ) det det 0i i

j j

X X X
J t X X X

X X
X X X

χ χ χ
χ χ χ χ χ

χ χ χ

∂ ∂ ∂ ∂ ∂ ∂
⎡ ⎤∂ ∂

≡ ∇ = = = ∂ ∂ ∂ ∂ ∂ ∂ ≠⎢ ⎥
∂ ∂⎢ ⎥⎣ ⎦ ∂ ∂ ∂ ∂ ∂ ∂

X χ . (1) 

 
It can be shown that ( , )J tX  is a measure of the ratio of the deformed local volume at  
time t  to the original volume so that its nonzero value in (1) makes physical sense. 

Since ( ),0 =χ X X , one observes that
0

( ,0) 1i

j t

J
X
χ

=

∂
= =
∂

X  . Furthermore, continuity of 

χ  as a function of t implies that J is continuous in time. Consequently, 0J >  for 0t ≥ . 
The latter analysis leads to the concept of a proper or admissible deformation as one in 
which 0J >  for 0t ≥ . 
 
The displacement field := −u x X  is a smooth (the term ‘smooth’ means that the 
function u , and its first and second derivatives are continuous), single-valued mapping 
from material points ∈X B  to spatial points x , so that = − ∈u x X V , where V  is the 
vector space associated with the Euclidean space E . 
 
It is also customary to use the notation ( , ) ( , )t t=x X χ X   and  ( ) ( )1, ,t t−=X x χ x . In 
component form, one writes 
 

1 2 3 1 2 3( ,  ,  , ) (  ,  ,  ,  ),    1,  2,  3.i i i ix x X X X t X X x x x t i= = =  (2) 
 
The mapping ( ) ( )1, ,t t−=X x χ x  is used to denote the material point that is located at x  
at time t .  
 
2.1.1. Lagrangian and Eulerian Descriptions 
 
Two coordinate systems have been introduced. Functions of the body in motion 
describing physical or kinematical properties can be expressed using either material 
coordinates X  or spatial coordinates x , and this gives rise to either material or spatial 
descriptions, respectively. In the material or Lagrangian description, attention is paid to 
the material points during the motion. In the spatial or Eulerian description, the focus is 
on events that take place at points in space. 
 
Since the Lagrangian description follows a material point of the body, the rate of change 
of a quantity is associated with that particular material point. Consider a scalar function 
(for instance temperature) in Lagrangian description [ ): 0,G × ∞ →B , (so that G is a 
function of X  and t ). Then its material time derivative (this is also known as the total 
time derivative) is the time rate of change of G  for a fixed material point. That is,  
 

( ) ( , )  : .DG G t,t
Dt t

∂
=

∂ X

XX  (3) 
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The Eulerian description considers quantities at fixed spatial points. The function  G  
could be expressed as a function of the coordinates  x . Thus, let  

1( , ) : ( ( , ), )g t G t t−=x χ x . Then,  
 

 Dg g g
Dt t t

∂ ∂
= +∇ ⋅
∂ ∂x X

x  (4) 

 

where i i i
k i k i

k k i

x x xg g gg
t x t x t x t

∂ ∂ ∂∂ ∂ ∂ ∂
∇ ⋅ = ⋅ = ⋅ =

∂ ∂ ∂ ∂ ∂ ∂ ∂X X X X

x e e e e . Here, the usual 

summation convention is assumed for a repeated index (
3

1
j j j j

j
c c

=
= ∑e e ). The term 

( )t∂ ∂ Xx  is the velocity of the material point, that is, 

( )  : k
k k k

x,t V
t t

∂∂
= = =
∂ ∂X X

xV X e e , where   : k
k

xV
t

∂
=

∂ X
. Since Dg Dt  in (4) maps 

( ), tt ∈ × →x B ,  ( , )tV X  is replaced by its Eulerian (or spatial) description  
1( , ) : ( ( , ), )t t t−=v x V χ x  (this is simply the velocity of the material point  X  which is at 

x  at time t ), so that  
 
Dg g g
Dt t

∂
= +∇ ⋅
∂ x x v . (5) 

 
The time rate of change of the velocity of a material point X  is its acceleration which, 
from (3) is given by, 
 

( ), i
i

VDt
Dt t t

∂∂
= = =

∂ ∂X X

V VA X e . (6) 

 
If the Eulerian description of the velocity ( ), tv x  is prescribed, then an application of 
(5) yields, 
 

( )D
Dt t

∂
= + ⋅∇
∂ x

x

v v v v  (7) 

 
or, in component form,  
 

i i i
k

k

Dv v v v
Dt t x

∂ ∂
= +
∂ ∂x

 (8) 

 
The first term on the right-hand side of (7) is called the local acceleration while 
( )∇ ⋅xv v  is the convective acceleration. The material time derivative of a tensor field is 
also expressed with a dot above the letter representing the tensor. In what follows, the 
distinction between material description and spatial description will be clear when the 
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arguments ( ), tx  or ( ), tX  are included. However, when they do not appear, then the 
spatial description will be designated via small letters. On the other hand, a Lagrangian 
description will use capital letters or a  bar above the letter. It follows, for instance, that 
one may use ( ) ( ), ,t t=v X V X . 
 
2.1.2. Material and Spatial Differential Operators 
 
The initial or reference configuration is described by a system with coordinates X  
while the current configuration is described by a system having coordinates x . The 
functions under study depend on these coordinates as has been explained previously. 
These functions can be either scalars, vectors or tensor valued functions. Since there are 
two coordinate systems, differential operations on these tensor fields have to be clearly 
distinguished in order to avoid confusion. Different authors follow different notations. 
For instance, while differential operators in the initial configuration are usually denoted 
with a capital letter, such as Grad, Curl, Div, in the current configuration these same 
differential operators are denoted as grad, curl, div. These ideas are developed in what 
follows. 
 
Let  3:φ →  be a scalar function of the spatial point 3∈x . To first order (in this 

Taylor series,  higher order terms  ( ) ( )2 3, ,...d dx x  have been neglected), the total 
change in φ  is given by 
 

i
i

d d dx
x
φφ φ ∂

= ∇ ⋅ =
∂x x  (9) 

 

where i id dx=x e , and i
ix

∂
∇ =

∂x e  is called the spatial gradient. On the other hand, if 

Φ  is a function of the material point X , then  
 

i
i

d d dX
X
∂Φ

Φ =∇ Φ⋅ =
∂X X  (10) 

 

where i id dX=X e   and i
iX

∂
∇ =

∂X e   is the material gradient. The notation that will be 

used here to distinguish between differential operators in the initial configuration and 
the differential operators in the current configuration will follow  in accord with the 
example just given regarding the material gradient  ∇X  and the spatial gradient  ∇x . 
Nevertheless, differential operators could also be denoted as either Grad, Curl, Div, etc, 
for the coordinates X  or grad, curl, div, etc for the coordinates  x . 
 
2.2. Displacement, Deformation and Motion 
 
The displacement field u = x - X  was introduced in Section 2.1.1. One can consider 
either the material description of the displacement field denoted as 
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( ) ( ), ,t t= −u X x X X , or its spatial description ( ) ( ), ,t t= −u x x X x . If the focus is on 
the displacement of a material point (i.e., attention is given to the position of a material 
point X  in time), then the description is related to the trajectory of that particle. It 
follows that the first and second time derivatives of the material point position (or its 
displacement) gives the particle velocity and particle acceleration, respectively. The 
examination of relative displacements between material points that is due to the 
deformation of the body is known as deformation analysis. Thus, time does not play any 
role in this analysis. If time is included, then, the analysis is known as motion analysis. 
An arbitrary motion or displacement of the body involves deformation as well as the 
most general rigid motion, i.e. translation and rotation of the body. 
 
In continuum mechanics, it is usual to distinguish between deformation and motion 
analysis. In the former analysis, two configurations of the body - the initial or 
undeformed and a current or deformed one – are considered, regardless of the sequence 
of configurations between the initial configuration and the current one. On the other 
hand, motion analysis focuses on the rate with time at which the deformation takes 
place. Therefore, the sequence of configurations is crucial. 
 
- 
- 
- 
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