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Summary  
 
Governing equations are developed for the displacements and stresses in a solid with a 
linear constitutive law under the restriction that strains are small. Alternative variational 
formulations are introduced which can be used to obtain approximate analytical 
solutions and which are also used to establish a uniqueness theorem. Techniques for 
solving boundary-value problems are discussed, including the Airy stress function and 
Muskhelishvili’s complex-variable formulation in two dimensions and the Papkovich-
Neuber solution in three dimensions. Particular attention is paid to singular stress fields 
due to concentrated forces and dislocations and to geometric discontinuities such as 
crack and notch tips. Techniques for solving two-dimensional problems for generally 
anisotropic materials are briefly discussed.  
 
1. Introduction 
 
The subject of Elasticity is concerned with the determination of the stresses and 
displacements in a body as a result of applied mechanical or thermal loads, for those 
cases in which the body reverts to its original state on the removal of the loads. If the 
loads are applied sufficiently slowly, the particle accelerations will be small and the 
body will pass through a sequence of equilibrium states. The deformation is then said to 
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be ‘quasi-static’. In this chapter, we shall further restrict attention to the case in which 
the stresses and displacements are linearly proportional to the applied loads and the 
strains and rotations are small. These restrictions ensure that the principle of linear 
superposition applies — i.e.,, if several loads are applied simultaneously, the resulting 
stresses and displacements will be the sum of those obtained when the loads are applied 
separately to the same body. This enables us to employ a wide range of series and 
transform techniques which are not available for non-linear problems.  
 
1.1. Notation for Position, Displacement and Strain  
 
We shall define the position of a point in three-dimensional space by the Cartesian 
coordinates 1 2 3( )x x x, , . Latin indices i j k l, , , , etc will be taken to refer to any one of the 
values 1,2,3, so that the symbol ix  can refer to any one of 1 2 3x x x, , . The Einstein 
summation convention is adopted for repeated indices, so that, for example  
 

3
2 2 2 2
1 2 3

1
i i i i

i
x x x x x x x R

=

≡ = + + = ,∑  (1) 

 
where R  is the distance of the point 1 2 3( )x x x, ,  from the origin. We can also define 
position using the position vector  
 

i ix= ,R e  (2) 
 
where ie  is the unit vector in direction ix .  
 
Suppose that a given point is located at i ix=R e  in the undeformed state and moves to 
the point i iξ= eρ  after deformation. We can then define the displacement vector u  as  
 

-= ,u Rρ  (3) 
 
or in terms of components,  
 

i i iu xξ= − .  (4) 
 
When the body is deformed, different points will generally experience different 
displacements, so u  is a function of position. We shall always refer displacements to 
the undeformed position, so that iu  is a function of 1 2 3x x x, , .  
 
1.2. Rigid-Body Displacement  
 
There exists a class of displacements that can occur even if the body is rigid and hence 
incapable of deformation. An obvious case is a rigid body translation i iu C= , where iC  
are constants (independent of position). We can also permit a small rotation about each 
of the three axes (recall that in the linear theory rotations are required to be small). The 
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most general rigid-body displacement field can then be written as:  
 

i i j ijk ku C D x= + ,ε  (5) 
 
where ijkε  is the alternating tensor which is defined to be 1 if the indices are in cyclic 
order (e.g. 1,2,3 or 2,3,1), –1 if they are in reverse cyclic order (e.g. 2,1,3) and zero if 
any two indices are the same.  
 
1.3. Strain, Rotation and Dilatation  
 
In the linear theory, the strain components ije  can be defined in terms of displacements 
as  
 

1
2

ji
ij

j i

uue
x x

⎛ ⎞∂∂
= + .⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

 (6) 

 
This leads (for example) to the definitions  
 

1 1 2
11 12

1 2 1

1
2

u u ue e
x x x

⎛ ⎞∂ ∂ ∂
= ; = +⎜ ⎟∂ ∂ ∂⎝ ⎠

 (7) 

 
for normal and shear strains respectively. We also define the rotation  
 

1
2

j
k ijk

i

u
x

ω
∂⎛ ⎞

= .⎜ ⎟∂⎝ ⎠
ε  (8) 

 
It can be verified by substitution that if the displacement is given by (5), there is no 
strain ( 0ije = ) and the rotation k kDω = .  
 
By considering the deformation of an infinitesimal cube of material of initial volume 
V , it can be shown that the proportional change in volume is the sum of the three 
normal strains — i.e.,  
 

ii
V e e

V
δ

≡ = .  (9) 

 
This quantity is known as the dilatation and is denoted by the symbol e .  
 
1.4. Compatibility of Strain 
 
If the strains ije  and rotations kω  are known functions of 1 2 3x x x, , , Eqs. (6, 8) constitute 
a set of partial differential equations that can be integrated to obtain the displacements 

iu . In a formal sense, one can write  
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B

B A A
dS

S
∂

= + ,
∂∫
uu u  (10) 

 
where A B,  are two points in the body and the integration is performed along any line 
between A  and B  that is entirely contained within the body. The displacement u  must 
be a single-valued function of position and hence the integral in Eq. (10) must be path-
independent. Using Eqs. (6, 8) to define the derivatives inside this integral, it can be 
shown that this requires that the strains satisfy the compatibility equations  
 

0sj si
pks

k i j

e e
x x x
⎛ ⎞∂ ∂∂

− = .⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠
ε  (11) 

 
Alternatively, these equations can be obtained by eliminating the displacement 
components between Eqs. (6). Equation (11) can be expanded to give three equations of 
the form  
 

2 2 2
11 22 12

2 2
1 22 1

2e e e
x xx x

∂ ∂ ∂+ =
∂ ∂∂ ∂

 (12) 

 
and three of the form  
 

2
33 23 31 12

1 2 3 1 2 3

e e e e
x x x x x x

⎛ ⎞∂ ∂ ∂∂∂ = + − .⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
 (13) 

 
The compatibility equations are sufficient to ensure that the integral in (10) is single-
valued if the body is simply connected, but if it is multiply connected, they must be 
supplemented by the explicit statement that the corresponding integral around a closed 
path surrounding any hole in the body be zero. Explicit forms of these additional 
conditions in terms of the strain components were developed by E.Cesaro and are 
known as Cesaro integrals.  
 
2. Traction and Stress  
 
We shall use the term traction and the symbol t  to define the limiting value of force per 
unit area applied to a prescribed infinitesimal elementary area, such as a region of the 
boundary of the body. Since the loaded surface is defined, the traction is a vector it . To 
define a component of stress σ  within the body, we need to identify both the plane on 
which the stress component acts and the direction of the traction on that plane. We 
define the plane by its outward normal, sothat the ix -plane is perpendicular to the 
direction ix . Notice that this plane can also be defined as the locus of all points 

1 2 3( )x x x, ,  satisfying the equation ix C=  where C  is any constant. With this notation, 
we then define the stress component ijσ  as the component of traction in the j -direction 
acting on the ix -plane. The resulting components are illustrated in Figure 1.  
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Figure 1. Notation for stress components. 
 
The equilibrium of moments acting on the block in Figure 1.1 requires that ij jiσ σ=  and 
hence that the matrix of stress components  
 

11 12 13

21 22 23

31 32 33

σ σ σ
σ σ σ
σ σ σ

=σ  (14) 

 
is symmetric. Notice that the diagonal elements of the stress matrix define normal 
stresses and the convention implies that tensile normal stresses are positive. The off-
diagonal elements define shear stresses. 
 
2.1. Equilibrium of Stresses  
 
The stress components in any continuum are constrained by the requirement that all 
parts of the body obey Newton’s law of motion. Applying this condition to an 
infinitesimally small rectangular element of material 1 2 3( )x x xδ δ δ , we obtain  
 

2

2
ij i

i
j

up
x t
σ

ρ
∂ ∂+ = ,
∂ ∂

 (15) 

 
where ip  represents the components of a body force vector p  per unit volume, ρ  is 
the density and t  is time. The basic postulate of elasto-statics is that the loading rate is 
sufficiently small for the acceleration term 22

iu t/∂∂  to be neglected, leading to the 
equilibrium equation  
 

0ij
i

j

p
x
σ∂

+ = .
∂

 (16) 
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3. Transformation of Coordinates 
 
If 1 2 3x x x, ,  and 1 2 3x x x′ ′ ′, ,  are two sets of Cartesian coordinates sharing the same origin, 
we can define a matrix l  of direction cosines such that ijl  is the cosine of the angle 
between the axes ix′  and jx . It then follows that  
 

i ij j i ji jx l x x l x′ ′= ; =  (17) 
 
and since the three rows and three columns of l  each defines a set of orthogonal unit 
vectors, we also have  
 

ij ik jk ij kj ikl l l lδ δ= ; = .  (18) 
 
Vectors, such as the displacement u  can be transformed to and from the new coordinate 
system by the relation  
 

i ij j i ji ju l u u l u′ ′= ; = .  (19) 
 
and the strain components ije  transform according to the rules  
 

ij ip jq pq ij pi qj pqe l l e e l l e′ ′= ; = ,  (20) 
 
which follow from the definitions (6) and (17, 19). The corresponding stress 
transformation equations are obtained by considering the equilibrium of an infinitesimal 
tetrahedron whose four surfaces are perpendicular to 1 2 3 ix x x x′, , ,  respectively. We 
obtain  
 

ij ip jq pq ij pi qj pql l l lσ σ σ σ′ ′= ; = ,  (21) 
 
which of course have the same form as (20). Quantities which transform according to 
equations of this form are known as Cartesian tensors of rank 2.  
 
4. Hooke’s Law  
 
Linear elasticity is restricted to materials that obey Hooke’s law in the sense that the 
stress and strain tensors are linearly related. The most general such relation can be 
written as: 
 

k
ij ijkl kl ijkl

l

uc e c
x

σ ∂
= = ,

∂
 (22) 

 
where ijklc  is a Cartesian tensor of rank 4 known as the elasticity tensor. It can be 
transformed into the coordinate system 1 2 3x x x′ ′ ′, ,  using the relation  
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ijkl ip jq kr ls pqrsl l l l cc = .′  (23) 
 
Equation (22) can be viewed as a set of linear algebraic equations for kle , which can be 
inverted to give an equation of the form  
 

ij ijkl kle s σ= ,  (24) 
 
where ijkls  is known as the compliance tensor.  
 
Both the elasticity tensor and the compliance tensor must satisfy the symmetry 
conditions  
 

ijkl jikl klij ijlkc c c c= = = ,  (25) 
 
which follow from (i) the symmetry of the stress and strain tensors (e.g. ij jiσ σ= ) and 
(ii) the reciprocal theorem, which we shall discuss in Section 6.4 below. Using these 
conditions, the maximum number of independent constants in ijklc is reduced to 21. 
However, the material may have additional structural symmetries in particular 
coordinate systems which further reduces the number of independent elastic constants. 
The greatest degree of symmetry arises when the material is isotropic so that the 
elasticity tensor is invariant under all Cartesian coordinate transformations. In this case, 
only two constants are independent and they can be defined such that  
 

ijkl ij kl ik jl jk ilc λδ δ μ δ δ δ δ⎛ ⎞
⎜ ⎟
⎝ ⎠

= + + ,  (26) 
 
where λ μ,  are Lamé’s constants. The elastic constitutive law (22) then takes the form  
 

2 jk i
ij kk ij ij ij

k j i

uu ue e
x x x

σ λ δ μ λδ μ
⎛ ⎞∂∂ ∂

= + = + + .⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠
 (27) 

 
An alternative statement of the isotropic constitutive law is  
 

(1 ) ij kk ij
ije

E E
ν σ νσ δ+

= − ,  (28) 

 
where E ν,  are Young’s modulus and Poisson’s ratio respectively. Clearly the two sets 
of elastic constants are related, since (28) is the inversion of (27). In fact  
 

2 (3 2 )
(1 )(1 2 ) (1 2 ) 2(1 ) ( ) 2( )

E E Eν μν μ λ μ λλ μ ν
ν ν ν ν λ μ λ μ

+
= = ; = ; = ; = .

+ − − + + +
 (29) 

 
4.1. Equilibrium Equations in Terms Of Displacements  
 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

CONTINUUM MECHANICS - Linear Elasto-Statics - J.R. Barber 

©Encyclopedia of Life Support Systems(EOLSS) 

Hooke’s law (22) and the strain displacement relations (6) can be used to write the 
equilibrium equations (16) in terms of the displacements, giving  
 

2

0k
ijkl i

j l

uc p
x x
∂ + = .
∂ ∂

 (30) 

 
If the material is isotropic, we obtain  
 

2 2

( ) 0j i
i

i j k k

u u p
x x x x

λ μ μ∂ ∂+ + + = ,
∂ ∂ ∂ ∂

 (31) 

 
using (27) in place of (22).  
 
5. Loading and Boundary Conditions  
 
Suppose that an elastic body occupies the region Ω  and that its boundary is denoted by 
Γ . In a typical problem, the body force ip  will be prescribed and the stress and 
displacement components are required to satisfy Eqs. (16, 30) respectively throughout 
Ω . In addition, three boundary conditions must be specified at each point on the 
boundary.  
 
If the local outward normal to the surface is denoted by the unit vector n  (i.e., in  are 
the direction cosines of the normal), the corresponding traction it  can be written as: 
 

i j jit n σ= .   (32) 
 
The boundary condition at any given point may comprise prescribed values of traction 

it  or of displacement iu  or of some combination of the two. For example, if an elastic 
body is in contact with a plane frictionless rigid body defined by a normal in direction 

3x , the normal displacement 3u  must be zero, and the two shear tractions  
 

1 31 2 32t tσ σ= ; =  (33) 
 
must be zero. Notice that we cannot prescribe both the traction and the displacement in 
the same direction at any point, since this would generally lead to an ill-posed problem.  
 
5.1. Saint-Venant’s Principle 
 
B.de Saint-Venant first enunciated the concept that if two systems of loading at a local 
region on a boundary are statically equivalent (i.e., they correspond to the same total 
force and moment) then their elastic stress fields will approach each other with 
increasing distance from the loaded region. An equivalent statement, appealing to the 
concept of superposition, is that a localized region of tractions that are self-equilibrated 
(i.e., they correspond to zero total force and moment) will cause a stress field that 
decays with increasing distance from the loaded region. This statement is generally 
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known as Saint-Venant’s principle. It cannot be proved and in fact there are some 
important exceptions, notably for the loading of thin-walled structures. For example, if a 
thin-walled cylindrical shell is pinched by a pair of equal and opposite forces at one end, 
the effects will penetrate a considerable distance along the axis of the shell. However, 
the principle can be extremely useful in other situations. For example, if two non-
conforming elastic bodies are pressed together, a relatively complex stress field may be 
developed near the contact region, but at distances that are large compared with the 
contact area, the fields are well approximated by the solution for a concentrated force. 
 
5.1.1. Weak Boundary Conditions  
 
Saint-Venant’s principle also permits us on occasion to obtain approximate solutions by 
replacing the true boundary conditions on a part of the boundary by weak boundary 
conditions, which state merely that the tractions in this region should have the same 
force and moment resultants as those in the actual problem. For example, suppose we 
seek to determine the stresses in the two-dimensional rectangular body 

1 2a x a b x b− < < ,− < <  and that the boundary conditions on 1x a=  are  
 

11 2 1 2 12 2 2 2( ) ( ) ( ) ( )a x f x a x f xσ σ, = ; , = ,  (34) 
 
where 1 2f f,  are prescribed functions of 2x  in 2b x b− < < . The weak boundary 
conditions equivalent to (34) are  
 

( ) ( )1 11 2 1 2 2 2 12 2 2 2 2( ) ( ) 0 ( ) ( ) 0
b b

b b
F a x f x dx F a x f x dxσ σ

− −
≡ , − = ; ≡ , − =∫ ∫  

 

( )11 2 1 2 2 2( ) ( ) 0
b

b
M a x f x x dxσ

−
≡ , − = ,∫   (35) 

 
where 1 2F F M, ,  are the force and moment resultants on the boundary implied by the 
difference between a candidate stress field and one that exactly satisfies (34). Saint-
Venant’s principle implies that any solution satisfying (35) will differ significantly from 
the solution satisfying the strong (point wise) conditions (34) only in a region near 

1x a=  of magnitude comparable to the dimension b  and hence if a b , the solution 
will be quite accurate in a region distant from this boundary. We shall see in Section 8.1 
below that this device often enables us to obtain closed-form approximations for 
problems that would otherwise be extremely complex.  
 
5.2. Body Force  
 
It is important to distinguish between loading of a body by surface tractions and by 
body force. A body force is an external force that applies in a distributed sense on the 
internal particles of the body. Thus, it must necessarily involve a physical mechanism 
that can ‘act at a distance’. The commonest case of this kind involves gravitational 
forces (self weight), but other mechanisms are possible, such as electromagnetic forces.  
 
Another important source of body force arises if the body experiences rotation or 
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translational acceleration. It might be argued that this takes us beyond the field of 
elasto-statics, but a quasi-static solution can still be obtained if the acceleration terms 
included are only those corresponding to the rigid-body motion. For example, if the 
body is rotating at constant angular velocity Ω , D’Alembert’s principle can be used to 
convert the corresponding centripetal acceleration into a centrifugal body force 2rρΩ , 
where r  is the distance from the axis of rotation.  
 
If the body forces are prescribed, they can be carried to the right hand side as known 
functions in Eqs. (16, 30), in which case these become inhomogeneous linear partial 
differential equations. The solution of these equations can then be constructed as the 
sum of any particular solution and the general solution of the corresponding 
homogeneous equation. However, the homogeneous equation is also the equation to be 
satisfied when there are no body forces. Thus, one strategy for solving problems with 
body forces is (i) to seek any particular solution of the equilibrium equation (without 
regard to the boundary conditions on Γ ) and then ‘correct’ the boundary conditions by 
superposing an appropriately general solution of the problem without body force.  
 
The particular solution is generally easy to obtain and can often be written down by 
inspection. For example, for the case of gravitational loading 3i ip gρ δ= − , a simple 
particular solution of (31) is  
 

2
3

1 2 30
2( 2 )

gxu u u ρ
λ μ

= = ; = .
+

 (36) 

 
For this reason, we shall mostly restrict the following discussion to problems without 
body force. 
 
5.3. Thermal Expansion, Transformation Strains and Initial Stress  
 
Elastic stresses can also be generated in a body as a result of internal physical processes 
that tend to change the parameters of the atomic or molecular structure. The simplest 
example is a change in temperature TΔ , which in the absence of stress would cause the 
body to expand equally in all three directions, giving the hydrostatic strain components  
 

ij ije Tα δ= Δ ,  (37) 
 
where α  is the coefficient of thermal expansion. If the temperature is non-uniform, 
these strains may not satisfy the compatibility equation (11), in which case stresses will 
be induced so as to restore compatibility. Similar effects can be produced by other 
physical processes, such as a change in crystal structure as a material transforms from 
one phase to another. In the absence of stress, these processes (including thermal 
expansion) would contribute an ‘inelastic’ strain 0

ije  which is additive to the elastic 
strain given by Hooke’s law (24), giving  
 

0
ij ijkl kl ije s eσ= + .  (38) 
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Practical objects are generally manufactured by some inelastic process. For example, a 
body may be solidified from an initially liquid state, or it may be plastically deformed 
into its final configuration. These processes typically leave the body in a state of initial 
stress or residual stress, meaning the state of stress that would remain in the body if all 
external loads were removed. Mathematically, there is no way to determine the residual 
stress without modeling the inelastic manufacturing process from which it derived. 
Various experimental techniques can be used to estimate the residual stresses in a body 
once manufactured. For example, X-ray diffraction can be used to estimate the mean 
atomic spacing and hence the elastic strain at various points on the surface of a body, 
from which the residual stresses can be deduced using Hooke’s law.  
 
If a body contains a non-zero residual stress field before loading, the stresses after 
loading will simply be the superposition of the residual stresses and the elastic stresses 
that would be induced in an initially stress-free body by the external loads. In the rest of 
this chapter, we shall therefore consider only the second of these two components. In 
other words, we shall assume that the unloaded body is free of stress.  
 
6. Strain Energy and Variational Methods  
 
When a body is deformed, the external forces do work. If the deformation is elastic, this 
work can be recovered on unloading and is therefore stored in the deformed body as 
strain energy. By considering the work done in gradually applying the stress 
components ijσ  to an infinitesimal rectangular element, we can show that the strain 
energy density — i.e., the strain energy stored per unit volume — is  
 

0
1 1 1
2 2 2

i k
ij ij ijkl ijkl ij kl

j l

u uU e c s
x x

σ σ σ∂ ∂
= = =

∂ ∂
 (39) 

 
and the strain energy stored in the entire body Ω  is  
 

0U U d
Ω

= Ω .∫  (40) 

 
Notice incidentally that 0U  must be positive for all possible states of stress or 
deformation and this places some inequality restrictions on the tensors ijkl ijklc s, .  
 
The same principle applies to an extended body with a non-uniform stress field. If the 
external loads are applied sufficiently slowly for accelerations (and hence kinetic 
energy) to be negligible, the work done during their application must be equal to the 
total strain energy in the body. This leads to the condition  
 

0
1 1
2 2i i i ip u d t u d U d

Ω Γ Ω
Ω+ Γ = Ω .∫ ∫ ∫  (41) 

 
We have argued here from the principle of conservation of energy, but this principle is 
implicit in Hooke’s law, which guarantees that the work done on each infinitesimal 
particle by the body force and by the forces exerted by the surrounding particles is 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

CONTINUUM MECHANICS - Linear Elasto-Statics - J.R. Barber 

©Encyclopedia of Life Support Systems(EOLSS) 

recoverable on unloading. Thus, Eq. (41) can be derived from the governing equations 
of elasticity without explicitly invoking conservation of energy. To demonstrate this, we 
first substitute (32) into the second term and apply the divergence theorem, obtaining  
 
1 1 1 ( )
2 2 2i i j ji i ji i

j

t u d n u d u d
x

σ σ
Γ Γ Ω

∂
Γ = Γ = Ω .

∂∫ ∫ ∫  (42) 

 
Differentiating by parts, we then have  
 
1 1 1 1( )
2 2 2 2

ji i
i i ji i i ji

j j j

ut u d u d u d d
x x x

σ
σ σ

Γ Ω Ω Ω

∂ ∂∂
Γ = Ω = Ω+ Ω .

∂ ∂ ∂∫ ∫ ∫ ∫  (43) 

 
Finally, we use the equilibrium equation (16) in the first term and Hooke’s law (22) in 
the second to obtain  
 
1 1 1
2 2 2

k i
i i i i ijkl

l j

u ut u d p u d c d
x xΓ Ω Ω

∂ ∂
Γ = − Ω+ Ω ,

∂ ∂∫ ∫ ∫  (44) 

 
from which (41) follows after using (39) in the last term.  
 
6.1. Potential Energy of the External Forces  
 
We can also construct a potential energy of the external forces which we denote by V . 
For a single concentrated force F  moving through a displacement u  this is defined as  
 

i iV F u= − ⋅ = − .F u  (45) 
 
It follows by superposition that the potential energy of the boundary tractions and body 
forces is given by  
 

t
i i i iV t u d p u d

Γ Ω
= − Γ − Ω ,∫ ∫  (46) 

 
where tΓ  is that part of the boundary over which the tractions are prescribed. We can 
then define the total potential energy Π  as the sum of the stored strain energy and the 
potential energy of the external forces — i.e.,  
 

1
2 t

i k
ijkl i i i i

j l

u uU V c d t u d p u d
x xΩ Γ Ω

∂ ∂
Π = + = Ω− Γ − Ω .

∂ ∂∫ ∫ ∫  (47) 

 
6.2. Theorem of Minimum Total Potential Energy  
 
Suppose that the displacement field iu  satisfies the equilibrium equations (30) for a 
particular set of boundary conditions and that we then perturb this state by a small 
variation iuδ . The corresponding perturbation in Π  is  
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i k
ijkl i i i i

j l

u uc d t u d p u d
x x
δδ δ δ

Ω Γ Ω

∂ ∂
Π = Ω− Γ − Ω .

∂ ∂∫ ∫ ∫  (48) 

 
Notice that 0iuδ =  in any region uΓ  of Γ  in which the displacement is prescribed and 
hence the domain of integration tΓ  in the second term on the right-hand side can be 
replaced by u tΓ = Γ +Γ .  
Substituting for it  from (32) and then applying the divergence theorem to the second 
term on the right-hand side of (48), we have  
 

i i ij j i ij i
j

ij i
i ij

j j

t u d n u d u d
x

u
u d d

x x

δ σ δ σ δ

σ δ
δ σ

⎛ ⎞
⎜ ⎟
⎝ ⎠Γ Γ Ω

Ω Ω

∂
Γ = Γ = Ω

∂

∂ ∂
= Ω + Ω .

∂ ∂

∫ ∫ ∫

∫ ∫
 (49) 

 
Finally, using the equilibrium equation (16) in the first term and Hooke’s law (22) in the 
second, we obtain  
 

i k
i i i i ijkl

j l

u ut u d p u d c d
x x
δδ δ

Γ Ω Ω

∂ ∂
Γ = − Ω+ Ω ,

∂ ∂∫ ∫ ∫  (50) 

 
and comparing this with (48), we see that 0δΠ = . In other words, the equilibrium 
equation requires that the total potential energy must be stationary with regard to any 
small variation iuδ  in the displacement field iu  that is kinematically admissible — i.e., 
consistent with the displacement boundary conditions. A more detailed second order 
analysis shows that the total potential energy must in fact be a minimum and this is 
intuitively reasonable, since if some variation iuδ  could be found which reduced Π , 
the surplus energy would take the form of kinetic energy and the system would not 
remain at rest.  
 
6.2.1. Rayleigh-Ritz Approximations and the Finite Element Method  
 
The theorem of minimum total potential energy provides a convenient strategy for the 
development of approximate solutions to problems where exact solutions are 
unavailable or overcomplicated. The first step is to define an approximation for the 
displacement field in the form  
 

( )
1 2 3 1 2 3

1
( ) ( )

m
n

i n i
n

u x x x C f x x x
=

, , = , , ,∑  (51) 

 
where the ( )n

if  are a set of approximating functions and nC  are arbitrary constants 
constituting the degrees of freedom in the approximation. The total potential energy is 
obtained from (47) as a quadratic function of the nC  and the theorem then requires that  
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0 1
n

n m
C
∂Π

= ; = , ,
∂

 (52) 

 
which defines m  linear equations for the m  unknown degrees of freedom nC . The 
corresponding stress components can then be found by substituting (51) into Hooke’s 
law (22).  
 
If the approximating functions ( )n

if  are defined over the entire body Ω , this typically 
leads to series solutions (e.g. power series or Fourier series) and the method is known as 
the Rayleigh-Ritz method. It is particularly useful in structural mechanics applications, 
but it is also useful for the challenging problem of the rectangular plate. However, if 
high accuracy is required it is often more effective to define a set of piecewise 
continuous functions each of which is zero except over some small region of the body. 
The body is divided into a set of elements and the displacement in each element is 
described by one or more shape functions multiplied by degrees of freedom nC .  
 
Typically, the shape functions are defined such that the nC  represent the displacements 
at specified points or nodes within the body. They must also satisfy the condition that 
the displacement be continuous between one element and the next for all nC . Once the 
approximation is defined, Eq. (52) once again provides m  linear equations for the m  
nodal displacements. This is the basis of the finite element method. Since the theorem of 
minimum total potential energy is itself derivable from Hooke’s law and the equilibrium 
equation, an alternative derivation of the finite element method can be obtained by 
applying approximation theory directly to these equations. To develop a set of m  linear 
equations for the nC , we substitute the approximate form (51) into the equilibrium 
equations, multiply by m  weight functions, integrate over the domain Ω  and set the 
resulting m  linear functions of the nC  to zero. The resulting equations will be identical 
to (52) if the weight functions are chosen to be identical to the shape functions. 
 
6.3. Castigliano’s Second Theorem 
 
The strain energy U  can be written as a function of the stress components, using the 
final expression in (39). We obtain  
 

1
2 ijkl ij klU s dσ σ

Ω
= Ω .∫  (53) 

 
If we now perturb the stress field by a small variation ijδσ , the corresponding 
perturbation in U  will be  
 

i
ijkl kl ij ij

j

uU s d d
x

δ σ δσ δσ
Ω Ω

∂
= Ω = Ω .

∂∫ ∫   (54) 

 
The divergence theorem gives  
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iji
i ij j i ij ij i

j j j

uu n d u d d u d
x x x

δσ
δσ δσ δσ⎛ ⎞

⎜ ⎟
⎝ ⎠Γ Ω Ω Ω

∂∂∂
Γ = Ω = Ω+ Ω

∂ ∂ ∂∫ ∫ ∫ ∫  (55) 

 
and the second term on the right-hand side must be zero, since the stress perturbation 

ijδσ  must satisfy the equilibrium equation (16) with no body force. Using (54, 55), we 
then have  
 

u u
i ij j i iU u n d u t dδ δσ δ

Γ Γ
= Γ = Γ ,∫ ∫  (56) 

 
where the integral is taken only over uΓ , since no perturbation in traction is permitted in 

tΓ  where it  is prescribed. It follows that the complementary energy  
 

u
i iC U u t d

Γ
= − Γ∫  (57) 

 
must be stationary with respect to all self-equilibrated variations of stress ijδσ . This is 
Castigliano’s second theorem. As with the Rayleigh-Ritz method, Castigliano’s 
theorem can be used to obtain approximate solutions to otherwise intractable analytical 
problems. The first step is to define a self-equilibrated stress field containing an 
appropriate number of degrees of freedom iC . This can often be done using an 
appropriate stress function, such as the Airy function of Section 7.2 or the Prandtl 
function of Section 7.4 below. The iC  are then determined by minimizing the 
complementary energy C  of Eq. (57). 
 
- 
- 
- 
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