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Summary 
 
We provide a simple introduction to wave propagation in the framework of linear 
elastodynamics. We discuss bulk waves in isotropic and anisotropic linear elastic 
materials and we survey several families of surface and interface waves. We conclude 
by suggesting a list of books for a more detailed study of the topic. 
 
1. Introduction 
 
In elastostatics we study the equilibria of elastic solids; when its equilibrium is 
disturbed, a solid is set into motion, which constitutes the subject of elastodynamics. 
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Early efforts in the study of elastodynamics were mainly aimed at modeling seismic 
wave propagation. With the advent of electronics, many applications have been found in 
the industrial world. These include the manufacturing of high frequency acoustic wave 
filters and transducers (used in everyday electronic devices such as global positioning 
systems, cell phones, miniature motors, detectors, sensors, etc.), the health monitoring 
of elastic structures (non-destructive evaluation in the automotive or aeronautic 
industry), the acoustic determination of elastic properties of solids (physics, medicine, 
engineering, etc.), ultrasonic imaging techniques (medicine, oil prospection, etc.), and 
so on.  
 
The local excitation of a body is not instantaneously detected at a distance away from 
the source of excitation. It takes time for a disturbance to propagate from one point to 
another, which is why elastodynamics relies heavily on the study of waves. Everyone is 
familiar with the notion of wave, but the broad use of this term makes it difficult to 
produce a precise definition. For this reason we shall consider the notion of wave as 
primitive.  
 
A fundamental mathematical representation of a wave is  
 

( ) ( )u x t f x vt, = −  (1) 
 
where f  is a function of the variable x vtξ = −  and v  is a nonzero constant. Waves 
represented by functions of the form (1) are called traveling waves. For such waves the 
initial profile ( 0) ( )u x f x, =  is translated along the x − axis at a speed v . For this 
reason traveling waves are also called waves of permanent profile or progressive plane 
waves.  
 
Traveling waves are a most important class of functions because the general solution of 
the classical one-dimensional wave equation: 2

tt xxu v u=  is the sum of two of such 
waves, one, ( )F x vt− , moving right with speed v , and the other, ( )G x vt+  moving left, 
also with speed v :  
 

( ) ( ) ( )u x t F x vt G x vt, = − + + ,  (2) 
 
where F  and G  are arbitrary functions. Therefore the solution to any initial value 
problem in the entire real line x−∞ < < ∞  of the wave equation can be written in terms 
of such two traveling waves via the well known d’Alembert form.  
 
When the functions F  and G  in (2) are sinusoidal we speak of plane harmonic waves. 
This is the case if  
 

cos ( )f A k x vt= − ,  (3) 
 
where A , k , v  are constant scalars. The motion (3) describes a wave propagating with 
amplitude A , phase speed v , wavenumber k , wavelength 2 kπ/ , angular frequency 

kvω = , and temporal period 2π ω/ . For mathematical convenience, the wave (2) can be 
represented as  
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{ expi ( )}f A k x vt += − ,  (4) 

 
where { }+•  denotes the real part of the complex quantity.  
 
In a three-dimensional setting, a plane harmonic wave propagating in the direction of 
the unit vector n  is described by the mechanical displacement vector,  
 

{ expi ( )}k vt += ⋅ − ,u A n x  (5) 
 
where A  is the amplitude vector, possibly complex. If A  is the multiple of a real 
vector: α=A a  say, where α  is a scalar and a  a real unit vector, then the wave is 
linearly polarized; in particular when 0× =a n , the wave is a linearly polarized 
longitudinal wave, and when 0⋅ =a n , the wave is a linearly polarized transverse wave. 
Otherwise (when α≠A a ) the wave is elliptically polarized; in particular when 

0. =A n , the wave is an elliptically polarized transverse wave.  
 
A three-dimensional setting allows for the description of more complex wave 
phenomena; for example it is possible to investigate the following interesting 
generalization of the solutions in (5),  
 

{ ( ) expi ( )}g k vt += ⋅ ⋅ − ,u m x A n x  (6) 
 
where m  is another unit vector and g  is the amplitude function. The planes 

constant⋅ =n x  are the planes of constant phase, and the planes constant⋅ =m x  are the 
planes of constant amplitude. When n  and m  are parallel, the waves are said to be 
homogeneous; this class includes (5) as a special case, but also waves for which the 
amplitude varies in the direction of propagation, such as attenuated homogeneous 
waves, see Figures 1. When 0× ≠n m , the waves are inhomogeneous; this class 
includes a wave which propagates harmonically in one direction while its amplitude 
decays in another, see Figures 2.  

 

 
 

Figure 1. Homogeneous waves. On the left: a wave with constant amplitude; On the 
right: a wave with an attenuated amplitude. 
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Figure 2. Inhomogeneous waves. On the left: the planes of constant phase are 
orthogonal to the planes of constant amplitude; On the right: they are at 45°. 

In the case of homogeneous waves (5), note that instead of the wave vector/speed 
couple ( v,k ) where k=k n , the slowness vector/frequency couple ( ω,s ) where 

1v−=s n , can be used equivalently, giving the representation:  
 

{ expi ( )}tω += ⋅ − .u A s x  (7) 
 
Similarly for inhomogeneous plane waves, a complex slowness vector can be 
introduced: i+ −= +S S S , giving the waves:  
 

{ expi ( )}tω += ⋅ − ,u A S x  (8) 
 
as a sub-case of (6). Here ω  is the real angular frequency, the planes of constant phase 
are + ⋅ =S x constant and the planes of constant amplitude are − ⋅ =S x constant. The 
phase speed is 1v += / S  and the attenuation factor is −S .  
 
As a train of waves propagates, it carries energy. It can be shown that for time-harmonic 
waves, the ratio of the mean energy flux to the mean energy density, gv  say, is 
computed as  
 

g g i
ik

ω ω⎡ ⎤
⎢ ⎥⎣ ⎦

∂ ∂
= , = .
∂ ∂

v v
k

 (9) 

 
This vector is called the group velocity.  
 
When we consider the wave equation in a semi-infinite domain or in a finite domain, 
the resolution can become quite complex, because we now have to satisfy not only 
initial conditions but also boundary conditions. In this chapter we study some wave 
solutions to the equations of elastodynamics in the case of an infinite medium, and then 
for some simple boundary conditions, with a view to demonstrate the usefulness and 
versatility of homogeneous and inhomogeneous plane waves.  
 
2. Bulk Waves 
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We start by considering the propagation of waves in an infinite elastic medium. They 
are often called bulk waves, because they travel within the bulk of a solid with 
dimensions which are large compared to the wavelength, so that boundary effects can be 
ignored (think for instance of the waves triggered deep inside the Earth crust by a 
seismic event.)  
 
Referred to a rectangular Cartesian coordinate system ( 1 2 3Ox x x ), say, the particle 
displacement components are denoted 1 2 3( )u u u, , , and the strains are given by  
 
2 ij i j j iu uε , ,≡ + ,  (10) 
 
where the comma denotes partial differentiation with respect to the Cartesian 
coordinates jx .  
 
The constitutive equations for a general anisotropic homogeneous elastic material are  
 

ij ijkl klcσ ε= ,  (11) 
 
where the elastic stiffness parameters ijklc  are constants, with the symmetries  
 

ijkl jikl ijlk klijc c c c= = = .  (12) 
 
Because of these symmetries there are at most twenty-one independent elastic constants.  
The equations of motion, in the absence of body forces, read  
 

2 2div tρ= ∂ /∂ ,σ u  (13) 
 
where ρ  is the mass density.  
Inserting the constitutive equation (11) into the equations of motions (13), we obtain  
 

2 2
ijkl k lj ic u u tρ, = ∂ /∂ .  (14) 

 
For isotropic elastic materials, 12 elastic stiffness parameters are zero, and the 
remaining 9 are given in terms of 2 independent material constants: λ  and μ , the so-
called Lamé coefficients. In that case the ijklc  can be written as  
 

( )ijkl ij kl ik jl il jkc λδ δ μ δ δ δ δ= + + .  (15) 
 
Then the constitutive equations (11) reduce to  
 

( )ij k k ij i j j iu u uσ λ δ μ, , ,= + + ,  (16) 
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and the equations of motions (14) read  
 

2 2( )i jj j ij iu u u tμ λ μ ρ, ,+ + = ∂ /∂ .  (17) 
 
Writing down the governing equations for anisotropic elastic materials is a more 
complex operation than what we have just done for isotropic materials.  
 
For example let us consider transversely isotropic materials. They have 12 elastic 
stiffness parameters which are zero, whilst the remaining 9 can be expressed in terms of 
5 independent material constants. When the axis of symmetry is along 3x , the 
constitutive equations (11) read  
 

11 11 1 1 12 2 2 33 3 3

22 12 1 1 11 2 2 13 3 3

33 13 1 1 2 2 33 3 3

13 44 1 3 3 1

23 44 2 3 3 2

1
12 11 12 1 2 2 12

( )
( )
( )

( )( )

d u d u d u
d u d u d u
d u u d u
d u u
d u u

d d u u

σ

σ

σ

σ

σ

σ

, , ,

, , ,

, , ,

, ,

, ,

, ,

= + + ,

= + + ,

= + + ,

= + ,

= + ,

= − + .

 (18) 

 
where 11d , 12d , 13d , 33d , 44d  are independent material parameters. The equations of 
motion (13) now read  
 

1
11 1 11 11 12 1 22 44 1 332

2 21
11 12 2 12 13 44 3 13 12

1
11 2 11 11 12 1 122

2 21
44 2 33 11 12 2 11 13 44 3 23 22

13 44 1 13 2 23 44 3 11 3 22 33 3

( )

( ) ( )
( )

( ) ( )

( )( ) ( )

d u d d u d u

d d u d d u u t
d u d d u

d u d d u d d u u t

d d u u d u u d u

ρ

ρ

, , ,

, ,

, ,

, , ,

, , , , ,

+ − +

+ + + + = ∂ /∂ ,

+ +

+ + − + + = ∂ /∂ ,

+ + + + + 2 2
33 3u tρ= ∂ /∂ .

 (19) 

 
As another example, consider cubic materials. They also have 12 elastic stiffness 
parameters which are zero, whilst the remaining 9 can be expressed in terms of only 3 
material constants. Here the constitutive equations (11) read  
 

11 11 1 1 12 2 2 3 3

22 11 2 2 12 1 1 3 3

33 11 3 3 12 1 1 2 2

13 44 1 3 3 1

23 44 2 3 3 2

12 44 1 2 2 1

( )
( )

( ( )
( )
( )
( )

d u d u u
d u d u u
d u d u u
d u u
d u u
d u u

σ

σ

σ

σ

σ

σ

, , ,

, , ,

, , ,

, ,

, ,

, ,

= + + ,

= + + ,

= + + ,

= + ,

= + ,

= + ,

 (20) 

 
where 11d , 12d , and 44d  are independent material parameters. The corresponding 
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equations of motion read  
 

2 2
11 1 11 44 1 22 1 33 12 44 2 12 3 13 1

2 2
11 2 22 44 2 11 2 33 12 44 1 12 3 23 2

2 2
11 3 33 44 3 11 3 22 12 44 1 13 2 23 3

( ) ( )( )

( ) ( )( )

( ) ( )( )

d u d u u d d u u u t

d u d u u d d u u u t

d u d u u d d u u u t

ρ

ρ

ρ

, , , , ,

, , , , ,

, , , , ,

+ + + + + = ∂ /∂ ,

+ + + + + = ∂ /∂ ,

+ + + + + = ∂ /∂ .

 (21) 

 
2.1. Homogeneous Waves in Isotropic Solids 
 
Consider the propagation of homogeneous plane waves of constant amplitude in a 
homogeneous isotropic elastic material. Therefore, search for solutions in the form (5) 
to the equations of motion (17). 
Introducing (5) into (17), gives the propagation condition  
 

2( ) vρ= ,Q n A A  (22) 
 
where the acoustical tensor ( )Q n  is given by  
 

( ) ( )λ μ μ= + ⊗ + ,Q n n n I  (23) 
 
Introducing any two unit vectors p  and q  forming an orthonormal triad with n  and 
using the decomposition = ⊗ + ⊗ + ⊗I n n m m p p , we write  
 

( ) ( 2 ) ( )λ μ μ= + ⊗ + ⊗ + ⊗ ,Q n n n m m p p  (24) 
 
Non-trivial solutions to the algebraic eigenvalue problem (22) exist only if the 
following secular equation  
 

( )2det ( ) 0vρ− = ,Q n I  (25) 
 
is satisfied. Here it factorizes into  
 

2 2 2( 2 )( ) 0v vλ μ ρ μ ρ+ − − = ,  (26) 
 
giving a simple eigenvalue and a double eigenvalue. Observing (24), we find that =A n  
is an eigenvector of ( )Q n , associated with the simple eigenvalue  
 

2
L 2vρ λ μ= + .  (27) 

 
It corresponds to a linearly polarized homogeneous longitudinal bulk wave, traveling 
with speed Lv . We also find that α= +A m p , where α  is an arbitrary scalar, is an 
eigenvector of ( )Q n  with the double eigenvalue  
 

2
Tvρ μ= .  (28) 
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It corresponds to an elliptically polarized homogeneous transverse wave, traveling with 
speed Tv . Sub-cases of polarization types include linear polarization when α  is real, 
and circular polarization when iα = ± .  
 
Note that the speeds do not depend on the direction of propagation n , as expected in the 
case of isotropy. Note also that the wave speeds are real when  
 

2 0 0λ μ μ+ > , > .  (29) 
 
Table 1 report longitudinal and transverse bulk wave speeds as computed for several 
isotropic solids.  

Material  ρ   λ   μ   
Tv   Lv   

Silica  2.2  1.6  3.1  3754  5954  
Aluminum  2.7  6.4  2.5  3043  6498  
Iron  7.7  11.0  7.9  3203  5900  
Steel  7.8  8.6  7.9  3182  5593  
Nickel  8.9  20.0  7.6  2922  6289  

 
Table 1. Material parameters of 5 different linear isotropic elastic solids: mass density 
( 310  kg/m 3 ) and Lamé coefficients ( 1010  N/m 2 ); Computed speeds of the shear and of 

the longitudinal homogeneous bulk waves (m/s). 
 
2.2. Homogeneous Waves in Anisotropic Solids 
 
Now search for solutions in the form (5) to the equations of motion in anisotropic solids 
(14). Then the eigenvalue problem (22) follows, now with an anisotropic acoustic tensor 

( )Q n  with components depending on the propagation direction n :  
 

( ) ( )ik ijkl l j kiQ c n n Q= = .n n  (30) 
 
In general the secular equation (25) is a cubic in 2v . It can be shown that when the roots 
are simple, the corresponding eigenvectors are proportional to three real vectors, 
mutually orthogonal. Hence in general there are three linearly polarized waves for a 
given propagation direction. If for some particular n , the secular equation has a double 
or triple root, then a circularly-polarized wave may propagate in that direction, see the 
isotropic case for an example.  
 
Consider a transversally isotropic solid: there the components of the acoustic tensor are 
found from the equations of motion (19) as  
 

2 2 21 1
11 11 1 11 12 2 44 3 12 11 12 1 22 2

2 2 21
22 11 12 1 11 2 44 3 23 13 44 2 32

2 2 2
33 22 1 2 33 3 13 13 44 1 3

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )               ( )

Q d n d d n d n Q d d n n

Q d d n d n d n Q d d n n

Q d n n d n Q d d n n

= + − + , = + ,

= − + + , = + ,

= + + , = + ,

n n

n n

n n

 (31) 
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Here the secular equation (25) factorizes into the product of a term linear in 2vρ  and a 
term quadratic in 2vρ . The linear term gives the eigenvalue  
 

2 2 2 21
2 11 12 1 2 44 32 ( )( )v d d n n d nρ = − + + ,  (32) 

 
and it can be checked that the associated eigenvector is T

2 1[ 0]n n= ,− ,A . It corresponds 
to a linearly polarized transverse wave, traveling with speed 2v . The quadratic is too 
long to reproduce here; in general it yields two linearly polarized waves which are 
neither purely longitudinal nor transverse, except in certain special circumstances, of 
which a few examples are presented below.  
 
If the wave propagates along the 1x  axis, then T[1 0 0]= , ,n  and the secular equation 
factorizes into 2 2 21

11 11 12 442( )( ( ) )( ) 0d v d d v d vρ ρ ρ− − − − = , giving the three 
eigenvalues 2

1 11v dρ = , 2 1
2 11 122 ( )v d dρ = −  (in accordance with (32)), and 2

3 44v dρ = . The 
eigenvector corresponding to 2

1vρ  is 1=A e , the unit vector along 1x , giving the wave  
 

1 1 1{expi ( )}k x v t += − ,u e  (33) 
 
a linearly polarized longitudinal wave. The eigenvectors corresponding to 2

2vρ  and 2
3vρ  

are 2=A e  and 3=A e , respectively, the unit vectors along 2x  and 3x , giving the two 
waves:  
 

1 2 2 1 3 3{expi ( )} {expi ( )}k x v t k x v t+ += − , = − ,u e u e  (34) 
 
two linearly polarized transverse waves.  
 
If the wave propagates along the 3x  axis, then T[0 0 1]= , ,n , and the secular equation 
factorizes into 2 2 2

33 44( )( ) 0d v d vρ ρ− − =  giving a simple eigenvalue 2
1 33v dρ =  and a 

double eigenvalue 2
2 44v dρ = . The corresponding solutions are a linearly polarized 

longitudinal wave:  
 

3 1 3{expi ( )}k x v t += − ,u e  (35) 
 
and an elliptically polarized transverse wave  
 

3 2 1 2{expi ( )} ( )k x v t α+= − + ,u e e  (36) 
 
where α  is an arbitrary scalar. Note that a circularly polarized wave is possible for 

iα = ± , as expected when the secular equation has a double root.  
 
Directions along which circularly polarized waves exist are called the acoustic axes. To 
determine whether there are acoustic axes in a given anisotropic solid is equivalent to 
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finding whether the secular equation admits a double root. In the present case, this could 
happen (a) if the determinant of the quadratic term in the secular equation is zero, or (b) 
if the eigenvalue (32) is also a root of the quadratic term. It can be shown that (a) is 
never possible, whereas (b) is always possible.  
 
Consider a cubic solid: there the acoustic tensor is found from the equations of motion 
(21) as  
 

2
11 44 1 44 12 44 1 2 12 44 1 3

2
12 44 1 2 11 44 2 44 12 44 2 3

2
12 44 1 3 12 44 2 3 11 44 3 44

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )

d d n d d d n n d d n n
d d n n d d n d d d n n
d d n n d d n n d d n d

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

− + + +
= + − + + .

+ + − +
Q n  (37) 

Here all three axes 1x , 2x , and 3x  are equivalent. For propagation along 1x  for instance, 
T[1 0 0]= , ,n  and the acoustical tensor is diagonal. There is one linearly polarized 

longitudinal wave traveling at speed 11d ρ/ , and an elliptically (and thus possibly, 

circularly) polarized transverse wave traveling at speed 44d ρ/ . Similarly when 
T[0 1 0]= , ,n  and when T[0 0 1]= , ,n . In each case, 2

2 44v dρ =  is a double eigenvalue, 
showing that the symmetry axes are acoustic axes.  
 
Now take T[ 1 3 1 3 1 3]= ± / , / , /n , or T[1 3 1 3 1 3]= / ,± / , /n , or 

T[1 3 1 3 1 3]= / , / , ± /n . These directions are acoustic axes, because then  
 

1
11 12 44 12 443( ) ( ) ( )d d d d d= − + + + ⊗ ,Q n I n n  (38) 

 
clearly showing the existence of a linearly polarized longitudinal wave (any A  such 
that × =A n 0 ) and of an elliptically polarized transverse wave (any A  such that 

0⋅ =A n ), which can be circularly polarized. They travel with speeds 1v  and 2v , 
respectively, given by  
 

2 21 1
1 11 12 44 2 11 12 443 3( 2 4 ) ( )v d d d v d d dρ ρ= + + , = − + ,  (39) 

 
the first eigenvalue being simple and the second, double. 
 
 
 
- 
- 
- 
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