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Summary 
 
The scope of this chapter is to recall some of the bases of turbulence theory and 
modeling methods. The emphasis is put on turbulent flow features that are of primary 
interest for turbulent flow prediction and modeling: turbulent scales, energy cascade, 
vorticity, turbulence production and dissipation. Then, some basics notions about 
turbulence modeling are reviewed and the advantages and limitations of the more 
frequently used types of turbulence models are discussed. The reader interested in more 
in-depth discussions of the subject is referred to relevant textbooks. 
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1. What is Turbulence? 
 
Most fluid flows occurring in nature as well as in engineering applications are turbulent. 
Even though many turbulent flows can be easily observed, it is very difficult to give an 
accurate and generally accepted definition of turbulence: actually, many definitions 
have been given along more than a century of turbulence studies, reflecting progresses 
in turbulence understanding. However, researchers and engineers generally agree on 
some characteristics of turbulent flows, i.e. on their general phenomenology. 
 
1.1. Phenomenology 
 
Turbulence or turbulent flow is a flow regime characterized by chaotic, stochastic 
fluctuations, in space and time, of the flow properties. These fluctuations cover a large 
range of space and time scales, ranging from the macroscopic scale, which essentially 
depends on the problem geometry, to the molecular scale, dominated by viscous effects, 
which contribute to dissipate the kinetic energy of turbulent fluctuations into heat. When 
present, turbulence usually dominates all other flow phenomena such as mixing, heat 
transfer, and drag. The lack of a satisfactory understanding of turbulence represents one 
of the great remaining fundamental challenges to scientists –and to engineers as well– 
since most technologically important flows are turbulent. Because of these difficulties, 
turbulence is often considered the last major unsolved problem in classical physics. 
 
It is often claimed that there is no good definition of turbulence, and many researchers 
are inclined to forego a formal definition in favor of intuitive characterizations. One of 
the best known of these is due to Richardson, in 1922: 
 
“Big whorls have little whorls, 
which feed on their velocity; 
And little whorls have lesser whorls, 
And so on to viscosity.” 
 
This reflects the physical notion that mechanical energy injected into a fluid is generally 
on fairly large length and time scales, but this energy undergoes a “cascade” whereby it 
is transferred to successively smaller scales until it is finally dissipated (converted to 
thermal energy) on molecular scales. This description underscores a second physical 
phenomenon associated with turbulence: dissipation of kinetic energy. 
 
In a 1937 lecture von Kármán defined turbulence by quoting G.I. Taylor as follows: 
 
“Turbulence is an irregular motion  
which in general makes its appearance in 
fluids, gaseous or liquid, when they flow 
past solid surfaces or even when 
neighboring streams of the same fluid 
flow past or over one another.” 
 
That definition is acceptable but is not completely satisfactory, since many irregular 
flows cannot be considered turbulent. To be turbulent, they must have certain stationary 
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statistical properties analogous to those of fluids when considered on the molecular 
scale. Hinze, in one of the most widely-used texts on turbulence, offers a more accurate 
definition, which takes into account statistical aspects: 
 
“Turbulent fluid motion is an irregular condition of the flow 
in which the various quantities show a random variation with 
time and space coordinates, so that statistically distinct average 
values can be discerned.” 
 
Note that none of the preceding definitions offers any precise characterization of 
turbulent flow in the sense of predicting, a priori, on the basis of specific flow 
conditions, when turbulence will or will not occur, or what would be its extent and 
intensity.  
 
The Navier-Stokes (N-S) equations, which are now almost universally believed to 
embody the physics of all fluid flows (within the confines of the continuum hypothesis), 
including turbulent ones, were introduced in the early to mid 19th Century by Navier 
and Stokes, and contain a priori all necessary information to describe the fluid motion 
accurately. For an incompressible flow of a constant density fluid, they may be written 
in vector notation as: 
 

u1uuu 2 ∇+∇−=∇⋅+
∂
∂ ν

ρ
p

t
 (1) 

 
where u  is the velocity vector, which must satisfy the incompressibility condition 

0, ρ∇ ⋅ =u  is the density, p  is the pressure, ν  is the fluid cinematic viscosity, and ∇  
is the classical nabla differential operator. In Eq. (1) the right-hand side represents the 
acceleration of a fluid particle, whereas terms at the right-hand side represent, 
respectively, pressure and viscous forces.  
 
The N-S equations are nonlinear and difficult to solve. As is well known, just a few 
exact solutions are available, and all of these have been obtained at the expense of 
introducing simplifying, often physically unrealistic, assumptions. Thus, little progress 
in the understanding of turbulence can be obtained via analytical solutions to these 
equations, and as a consequence early descriptions of turbulence were based mainly on 
experimental observations. 
 
In Cartesian components, Eq. (1) becomes: 
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In the above, Einstein’s summation convention has been used (According to which 
terms where an index appears twice, imply a summation over that index. For instance, 
given two vectors of the three-dimensional space x=(x1, x2, x3) and y=(y1, y2, y3), then 

their inner product 
3

1
i i

i
x y

=

⋅ = ∑x y  can be re-written using Einstein’s shorthand notation 

as i ix y⋅ =x y  where the summation symbol has been omitted).  
Introducing a suitable reference velocity scale U  and length scale L , the Navier-Stokes 
equations can be recast in non dimensional form: 
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From Eq. (3) it appears that, in the absence of body forces, the only free parameter in 
the N-S equations is the Reynolds number 
 

ULRe
ν

= , 

 
which represents the ratio of inertial to viscous forces in the flow and is strongly related 
to the first appearance of turbulent flow. For “small” values of the flow Reynolds 
number (where the concept “small” is strongly problem-dependent) the flow is 
dominated by viscous diffusion, and the N-S equations admit stable “regular” solutions, 
such that flow properties vary in an “ordered” way in space and time. In this case, the 
flow is said to be laminar. For higher values of the Reynolds number, inertial forces 
dominate the flow and the flow becomes unstable. In these conditions, both velocity and 
pressure fluctuations (and, for compressible flows, density fluctuations) appear, and the 
flow field becomes essentially three-dimensional and unsteady. When this phenomenon 
occurs, the flow is said to be turbulent.  
 
The fact that the deterministic Navier-Stokes equations, completed by deterministic 
initial and boundary conditions, may give rise to (at least apparently) random solutions 
may seem contradictory. Such a dilemma has been solved by Lorentz in 1963, when it 
was shown that some nonlinear systems of ordinary differential equations may be so 
extremely sensitive to initial conditions that an infinitesimal perturbation gives quickly 
rise to solutions that are completely different point wise, even if they display the same 
statistical properties (for instance, mean values). In the case of fluid motion, since it is 
impossible to reproduce a flow field with infinite experimental or numerical accuracy, 
two realizations of a given flow field will never be identical and, if the flow Reynolds 
number is sufficiently high, the two flows will be characterized, locally, by completely 
different values of the instantaneous flow properties. 
 
1.2. Some Notions in Hydrodynamic Stability and Transition 
 
Turbulence has its origins in the inherent instabilities of laminar flow. In flows which 
are originally laminar, turbulence arises from instabilities at large Reynolds numbers. A 
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flow becomes unstable when it undergoes a suitable perturbation (where how “suitable” 
depends on the kind of flow and on its Reynolds number). 
 

 
 

Figure 1. Simple example illustrating the notion of stability. 
 
For instance, let us consider a point-like mass lying in a “valley” (potential energy 
minimum) as in Figure 1: if the mass is displaced by a small quantity δ  from its 
equilibrium position, it tends to return to it as soon as the perturbation is removed. If 
however, the perturbation amplitude is large enough, the mass leaves the valley and 
returns back no more to its previous equilibrium position. Similarly, a realizable fluid 
flow has not only to be a valid solution of the Navier-Stokes equations, but also a stable 
one for the flow conditions considered. Using the words of Landau and Lifshits (1959): 
 
“Yet not every solution of the equation of motion,  
even if it is exact, can actually occur in Nature.  
The flow that occurs in Nature must not only obey  
the equations of fluid dynamics but also be stable.” 
 
For each given laminar flow, it is possible to find a finite value of the Reynolds number, 
referred-to as the critical Reynolds number, beyond which the flow may no longer exist 
in reality. Going further with the previous example, note that it is possible to establish 
some criterion to predict if the configuration will have a stable or unstable behavior 
under a given perturbation; however, nothing can be said about the new equilibrium 
state that will be reached due to an unstable perturbation. Similarly, for viscous fluid 
flows, it can be proved that a given laminar flow is unstable beyond a given critical 
Reynolds number; however, stability analysis does not predict turbulence. Rather, 
turbulence is something that is observed experimentally. It has never been demonstrated 
mathematically that turbulence is the stable state of a given flow at high Reynolds 
numbers. Also note that, in general, turbulence cannot maintain itself, but depends on its 
environment to obtain energy. A common source of energy for turbulent fluctuations is 
shear in the mean flow. If turbulence is generated in an environment where there is no 
shear or other maintenance mechanism, it decays, and the flow tends to become laminar 
again.  
 
Experiments have shown that transition to turbulence is commonly initiated by a 
primary instability mechanism, which in simple cases is two-dimensional. The primary 
mechanism produces secondary motions, which are generally three-dimensional and 
become unstable themselves, generating further instabilities, and so on. The sequence of 
instabilities generates intense localized three-dimensional disturbances, usually called 
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turbulent spots, which arise at random times and positions. These spots grow quickly 
and merge each other forming at last a developed turbulent flow. Figure 2 shows an 
example of this mechanism for a flat plate boundary layer. 
 
A more general mathematical definition of turbulence within the context of 
deterministic instabilities of the Navier-Stokes equations may be formulated as follows: 
 
“Turbulence is any chaotic solution to the 3-D Navier-Stokes 
equations that is sensitive to initial data and which occurs as 
a result of successive instabilities of laminar flows as a bifurcation 
parameter is increased through a succession of values.” 
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Figure 2: a) Growth of instabilities in a flat-plate boundary layer; b) turbulent spot 
formation; c) transition to turbulence of a boundary layer. 
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While this definition is still somewhat vague, it contains specific elements that permit 
detailed examination of flow situations relating to turbulence. First, it acknowledges 
that turbulent flow is a solution of the N-S equations. Second, it requires that the fluid 
behavior be chaotic, i.e., erratic, irregular, as required in earlier definitions, but 
deterministic and not random, coherently with the deterministic nature of the governing 
equations. Third, it states that turbulence is three dimensional. This is consistent with 
the common classical viewpoint where generation of turbulence is ascribed to vortex 
stretching and tilting which can only occur in 3D flow, as will be discussed in more 
detail below. Finally, the preceding definition also imposes a requirement of sensitivity 
to initial data which allows one to distinguish highly irregular laminar motion from 
actual turbulence. 
 
The notion of loss of stability of the laminar flow regime has both classical and modern 
roots. Stability analyses in the context of, mainly, normal mode analysis has been a 
mainstay in studies of fluid motion for at least a century, and their connections to 
transition to turbulence were already made in boundary layer studies. The modern 
contribution is to embed such approaches within bifurcation theory, thus opening the 
way to use of many powerful mathematical tools of modern analysis of dynamical 
systems. 
 
1.3. Properties of Turbulent Flow 
 
Once single perturbations have grown and multiplied such that they cover a continuous 
spectrum of frequencies, a velocity sensor in some given point of the flow field will 
detect a signal that is no longer “ordered”, i.e. can no longer be described in a 
deterministic way, but looks like a random signal. 
 
A list of characteristic features of turbulent flows is reported below. For more detail the 
reader is referred, e.g. to the classical textbook by Tennekes and Lumley (1972). 
 
• Irregularity. The flow is irregular, chaotic. This explains why statistical methods 

are often considered. Nevertheless, it is deterministic, and not random, and it is 
described by the Navier-Stokes equations. The flow exhibits a large spectrum of 
different length and time scales (eddy sizes).  

• Unsteadiness. A fluctuating signal necessarily implies flow unsteadiness. 
• Three-dimensionality. A turbulent flow is necessarily three-dimensional, since 

fluctuations in all space dimensions are equally probable. Actually, the major 
mechanism for perturbation propagation from one component to another in the 
frequency spectrum is the vortex stretching mechanism, which vanishes in two-
dimensional flow, as it will be discussed later. This implies that turbulence is not 
only three dimensional but also necessarily rotational, i.e. 0≠×∇ u .  

• Dissipation. Turbulence is a highly dissipative phenomenon since energy injected in 
an “ordered” form at a given frequency, is then distributed to a myriad of vortices 
that becomes smaller and smaller up to the molecular scale. At this level, the 
injected energy only contributes to intensify intermolecular collisions, i.e. system 
temperature. In other words, energy is converted into heat.  

• Diffusivity. The turbulence increases the exchange of momentum, also increasing 
the resistance (wall friction). More generally, turbulence leads to enhanced mixing 
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(heat and mass transfer), with respect to laminar flow. 
 
1.4. Brief Historical Survey 
 
The earliest recognition of turbulence as a distinguished physical phenomenon is to be 
ascribed to Leonardo da Vinci (circa 1500). Figure 3 shows some sketches by Leonardo 
illustrating turbulent flows with hierarchically organized vortices in such a way that 
there are vortices within vortices. In practice however, no substantial progress in 
understanding turbulence has been done until the late 19th Century. The first 
observations of turbulent flow in a scientific sense were described by Hagen in 1839. He 
was studying flow of water through round tubes and observed two distinct kinds of 
flow, which are now known as laminar (or Hagen-Poiseuille) and turbulent. If the flow 
was laminar as it left the tube, it looked clear like glass; if turbulent, it appeared opaque 
and frosty. In 1854, he published a second paper showing that viscosity as well as 
velocity influenced the boundary between the two flow regimes. Another important 
contribution was due to Boussinesq who, in the year 1877, suggested that turbulent 
stresses are linearly proportional to mean strain rates. The Boussinesq assumption is still 
the cornerstone of most turbulence models. In 1883, Osborne Reynolds introduced a 
dimensionless parameter –the above-mentioned Reynolds number- that gave a 
quantitative indication of the laminar to turbulent transition. In an experiment, Reynolds 
demonstrated that, under certain circumstances, the flow in a tube changes from laminar 
to turbulent over a given region of the tube. He used a large water tank that had a long 
tube outlet with a stopcock at the end of the tube to control the flow speed. A thin dye 
was injected into the flow at the tube inlet. When the speed of the water flowing through 
the tube was low, the filament of colored fluid maintained its identity for the entire 
length of the tube. However, when the flow speed was high, the filament broke up into 
the turbulent flow that existed through the cross section. Looking at the flow by means 
of a stroboscope, it appeared that the dye filament had broken up into many vortices of 
fluctuating direction and intensity. Reynolds showed that the transition from one flow 
regime to the other did not depend on the flow velocity alone, but on combination of 
velocity, the fluid cinematic viscosity, and a flow characteristic length, which has since 
been known as the Reynolds number. A sketch of Reynolds experiment is provided in 
Figure 4. These experimental results and analyses set the “way of seeing” turbulence for 
many years to come. In particular, Reynolds concluded that turbulence was far too 
complicated ever to permit a detailed understanding, and proposed to use a statistical 
approach: he introduced the decomposition of flow variables into mean and fluctuating 
parts, which has resulted in a century of study in an effort to arrive at usable predictive 
techniques based on this viewpoint. Beginning with this work the prevailing view has 
been that turbulence is a random phenomenon, and as a consequence there is little to be 
gained by studying its details, especially in the context of engineering analyses. 
 
Approximately the same time as Reynolds was proposing a random description of 
turbulent flow, the French mathematician Jules Henri Poincaré was finding that 
relatively simple nonlinear dynamical systems were capable of exhibiting chaotic 
random-in-appearance behavior that was, in fact, completely deterministic. 
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Figure 3: Leonardo Da Vinci: Studies of water passing obstacle and falling (c. 1508-
1509). 
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Figure 4: Reynolds apparatus for investigating the transition to turbulence in pipe flow, 
with sketches of laminar flow (a), turbulent flow (b) and turbulent flow in a 

stroboscopic light. From Reynolds (1883). 
 
Following Reynolds' introduction of the random view of turbulence and proposed use of 
statistics to describe turbulent flows, essentially all analyses were along these lines. The 
first major result was obtained by Ludwig Prandtl in 1925 in the form of a prediction of 
the eddy viscosity, i.e. the proportionality coefficient in the linear stress-strain relation 
introduced by Boussinesq. Prandtl's “mixing-length theory”, analyzed in more detail 
later, utilized an analogy between turbulent eddies and molecules or atoms of a gas to 
determine the length and velocity scales needed to construct an eddy viscosity. His 
reasoning followed the derivation of an analytical description of molecular viscosity 
used in the kinetic theory of gases. Despite the fact that this approach has essentially 
never been successful at making true predictions of turbulent flow, it does a fairly good 
job at making “post-dictions" of certain simple flows for which it has been calibrated. 
 
The next major steps in the analysis of turbulence were taken by G. I. Taylor during the 
1930s, who introduced formal statistical methods involving correlations, Fourier 
transforms and power spectra into the turbulence literature. In a 1935 paper he very 
explicitly presented the assumption that turbulence is a random phenomenon and he 
introduced statistical tools for the analysis of homogeneous, isotropic turbulence. The 
impact of this has lasted even to the present.  
 
In 1941 the Russian statistician A. N. Kolmogorov published three papers (in Russian) 
that provide some of the most important and most-often quoted results of turbulence 
theory. These results, which will be discussed in some detail later, represent a distinct 
departure from the approach that had evolved from Reynolds' statistical approach (but 
are nevertheless still of a statistical nature). Kolmogorov’s theory was derived purely 
from dimensional analysis and until recently, it has been used mainly as tests of other 
theories (or calculations). In recent years, theoretical turbulence studies have addressed 
breakdowns of Kolmogorov’s theory. 
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During the 1940s Landau and Hopf (separately) proposed that as Re  is increased a 
typical flow undergoes an infinity of transitions during each of which an additional 
incommensurate frequency (and/or wave number) arises due to flow instabilities, 
leading ultimately to very complicated, apparently random, flow behavior. This scenario 
was favored by many theoreticians even into the 1970s when it was shown to be 
untenable in essentially all situations. In fact, such transition sequences were never 
observed in experimental measurements, and they were not predicted by more standard 
approaches to stability analysis. 
 
The first textbooks on turbulence theory began to appear in the 1950s. The best known 
of these are due to Batchelor, Townsend and Hinze. Again, as was true in the preceding 
decade, most of this work represented consolidation of earlier ideas. On the other hand, 
experimental work during this period and even somewhat earlier, was beginning to cast 
some doubt on the consistency, and even the overall validity, of the random view of 
turbulence. In particular, it become clear that a completely random viewpoint was not 
really tenable, and by the late 1950s measurement techniques were becoming 
sufficiently sophisticated to consistently indicate existence of so-called “coherent 
structures” contradicting the random view of turbulence. 
 
By the beginning of the 1960s considerable advances were made possible by the 
introduction of the first digital computers. In 1963 the American meteorologist E. 
Lorenz published a paper, based mainly on machine computations that would eventually 
lead to a different way to view turbulence. In particular, this work presented a 
deterministic solution to a simple model of the N-S equations which was so temporally 
erratic that it could not (at the time) be distinguished from random. Moreover, this 
solution exhibited the feature of sensitivity to initial conditions, and thus essentially non 
repeatability. Furthermore, solutions to this model contained “structures” which might, 
at least loosely, be associated with the coherent structures being detected by 
experimentalists, although this was not recognized in 1963. The important point to take 
from this is that a deterministic solution to a simple model of the N-S equations had 
been obtained which possessed several notable features of physical turbulence. 
 
In 1971 Ruelle and Takens published a seminal paper that contributed to delineating a 
new view of turbulence. In this work it was shown that the N-S equations, viewed as a 
dynamical system, are capable of producing chaotic solutions exhibiting sensitivity to 
initial conditions and associated with an abstract mathematical construct called a strange 
attractor. This paper also presents the sequence of transitions (bifurcations) that a flow 
will undergo as Re is increased to arrive at this chaotic state, namely: steady, periodic, 
quasi-periodic, and finally turbulent. This short sequence of bifurcations directly 
contradicts the then widely-held Landau-Hopf scenario mentioned earlier. Indeed, by 
the late 1970s and early 1980s many experimental results were showing this type of 
sequence. 
 
Present-day turbulence investigations are deeply related to advances in computational 
techniques, starting from the early 1970s. In 1970 Dearoff proposed large-eddy 
simulation (LES). The first direct numerical simulation (DNS) by Orszag and Patterson 
dates from 1972. A wide range of Reynolds-averaged Navier-Stokes (RANS) 
approaches has been introduced also beginning around 1972. These initiated an 
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enormous modeling effort that continues to this day, in large part because it has yet to 
be successful. At the same time, most other approaches are not yet computationally 
feasible, except for academic problems. In particular, DNS was not feasible for practical 
engineering problems (and probably will not be for at least another 10 to 20 years 
beyond the present), and in the 70s and 80s this was true as well for LES. Thus, great 
emphasis was placed on the RANS approaches despite their many shortcomings that we 
will note in the following. By the beginning of the 1990s computing power was 
reaching a level to allow consideration of using LES for some practical problems if they 
involved sufficiently simple geometry, and since then a tremendous amount of research 
has been devoted to this technique. It is fairly clear that for the near future this is the 
most promising method for turbulence modeling. 
 
 
- 
- 
- 
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