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Biographical Sketches 
 
Summary 
 
This article begins by providing a development of the basic principles of the classical 
theory of electromagnetism, from the fundamental notions of point charges and 
magnetic dipoles through to distributions of charge and current in a non-deformable 
continuum, time-dependent electromagnetic fields and Maxwell’s equations. The 
modifications of the theory required to account for the deformability of material media 
are then summarized. In a specialization of the theory details are developed of the 
constitutive structure for static magnetoelastic interactions in a deformable material, and 
a review of the relevant continuum mechanics is included. The constitutive equations 
are presented first in the Eulerian description and then an alternative formulation of the 
equations based on a Lagrangian approach is adopted, which leads to an elegant and 
relatively simple structure of the governing equations. The theory is specialized further 
to the case of an isotropic magnetoelastic material and representative prototype 
boundary-value problems are formulated and then solved using a simple model 
constitutive law in order to illustrate the magnetoelastic coupling. 
 
1. Introduction 
 
Anyone who has ever played with a permanent magnet has been intrigued by how metal 
objects are attracted by the magnetic force. The force acts not only on the object as a 
whole, but on each bit of material, inducing a change in shape and/or size of the object 
commonly known as magnetostriction. For typical metals this change is very small and 
the associated variations in the magnetic and mechanical properties of the material can 
be neglected. The magnetism of transition metals comes hand-in-hand with mechanical 
stiffness, a duality that has come to be understood at a deep level in terms of the 
quantum mechanics of the electronic bands. Only recently, however, have researchers 
come to appreciate the profound potential of multi-functional compliant magneto-
sensitive materials as new materials have been synthesized. These mechanically soft 
materials are capable of large elastic deformations under the influence of an external 
magnetic field, much larger than in conventional magnetostriction. To put this advance 
in perspective, the new materials represent a step change by several orders of magnitude 
compared to conventional magnetic metals in both high magneto-mechanical 
compliance and large elastic deformability. The new materials are highly deformable 
and magnetizable polymers composed of a rubber-like base matrix embedded with 
micron-sized magneto-active particles. Like a typical rubber, they have low mechanical 
stiffness and are very compliant, especially in low-dimensional structures such as 
membranes and rods, while demonstrating good magnetic susceptibility. The small 
particle size ensures that the materials are effectively homogeneous, and the material 
processing has already been advanced to the point where robust material characteristics 
can be developed. 
 
The transformative concepts of nonlinearity in the response and the magneto-
mechanical coupling of these materials open the door for many new devices, impacting 
a range of applications that could not be addressed with previously available materials. 
The nonlinearity is the key. In his classic textbook on electrodynamics J. D. Jackson 
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states that “In substances other than ferromagnets, for weak enough fields the presence 
of an applied magnetic field induces a magnetization proportional to the magnitude of 
the applied field. We then say that the response of the medium is linear”. In other words, 
the linear electromagnetic theory, applicable to infinitesimal deformations and weak 
fields, neglects the magneto-mechanical coupling in the sense that there is no change in 
mechanical properties due to the applied magnetic field and no change in the magnetic 
properties due to mechanical deformations. The availability of materials that can operate 
in a highly nonlinear magneto-mechanical regime offers very exciting possibilities and 
challenges from the perspectives of device design, materials science, constitutive 
modeling and magnetomechanical theory. 
 
At present the influence of magnetic fields on the behavior of magneto-sensitive 
materials in the highly nonlinear regime is not well understood and the development of 
an appropriate theoretical framework is essential to further that understanding. While 
the extension of the theory of the magnetism of continuous media to highly deformable 
systems seems natural from an academic point of view, it has languished undeveloped 
because there has been no practical motivation hitherto. The materials did not exist! 
Recently we have begun to make progress in constructing a theoretical framework for 
the analysis of these materials, as we describe in the latter sections of this article. We 
need to take this theory further so as to describe accurately the nonlinear magneto-
mechanical coupling when large deformations are involved. The theory of large 
deformations is of fundamental interest, both in terms of the unique properties offered 
by magneto-sensitive elastomers and in terms of potential applications to, for example, 
sensors and controllable devices. 
 
We begin this chapter by first providing an overview of the fundamental principles of 
the classical theory of electromagnetism. Starting from the concepts of point and 
distributed electric charges in Section 2 we define the Lorentz force and the time 
independent electric field associated with a point charge and then establish Gauss’s 
theorem for a distribution of electrostatic charge. In Section 3, using the idealization of 
a magnetic dipole (equivalent to a current loop), we define the magnetostatic field and 
the magnetic potential and show how the magnetic field is connected to the current 
density associated with moving charge by Ampère’s Circuital Law. An explicit formula 
for the magnetic induction in terms of the current density is provided by the Biot-Savart 
Law. 
 
In Section 4 the interconnection between time-dependent electric and magnetic fields is 
quantified. In particular, Faraday’s Law is developed as a mathematical formulation 
expressing the association between time-varying magnetic and electric fields. Then, in 
Section 5, the full set of Maxwell’s equations governing the electric and magnetic fields 
for a known charge density and current distribution are collected together. The electric 
displacement vector and the magnetic field vector are introduced and the notions of 
polarization and magnetization in material media are discussed with particular reference 
to a linear (non-deformable) electromagnetic material. The continuity conditions across 
a material boundary for the electric and magnetic field vectors are summarized in 
Section 6. 
 
The development next takes account of the deformability of material media. To describe 
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the nonlinear magnetoelastic interactions in a deformable material, a review of 
continuum kinematics is necessary and this is provided in Section 7. Electromagnetic 
field variables and boundary conditions, which, in general, are defined with respect to 
the current configuration, are re-cast in Lagrangian form and the Lagrangian forms of 
the field equations are derived. From this point on we specialize to the case of 
magnetostatics in order to illustrate the application of the theory. In Section 8, we 
summarize in a simple form the equilibrium equations for a highly deformable 
magnetoelastic material whose mechanical properties can be changed significantly by 
the application of a magnetic field. We assume stationary conditions, neglect all electric 
fields, and consider the nonlinear magnetoelastic coupling only. An overview of 
different ways in which the equations of mechanical equilibrium can be written in the 
presence of magneto-mechanical interactions is provided. In addition, we list some of 
the many possible definitions of stress tensor that can be included in the equilibrium 
equations along with the associated magnetic body force terms. 
 
The general constitutive law for a nonlinear magnetoelastic material is derived and 
expressed in a compact form, with either the magnetic field or the magnetic induction as 
the independent magnetic variable. Here we consider an isotropic magnetoelastic 
material for which the constitutive equations can be expressed in terms of six invariants 
involving the deformation and a magnetic vector, which reduce to five for an 
incompressible material, as is appropriate for elastomers. These equations are used in 
Section 9, for an incompressible material, in the solution of two representative 
boundary-value problems involving circular cylindrical geometry, specifically the 
helical shear of a circular cylindrical tube with an axial magnetic field and the extension 
and inflation of a circular cylindrical tube with a circumferential magnetic field. For 
each problem a general formulation is developed without specialization of the 
(isotropic) constitutive law, and then specific results are discussed briefly for a special 
choice of such a law. It is noted, in particular, that certain restrictions may be placed on 
the class of constitutive laws for a considered combination of deformation and magnetic 
field to be admitted. 
 
Because of space limitations only partial coverage of the vast subject of electromagnetic 
effects in deformable media can be provided in this chapter, and many interesting 
phenomena are not included. For example, we do not include discussion of dissipative 
effects such as those arising in electrically conducting materials or of the different types 
of magnetic properties of materials. Moreover, the applications considered in Sections 8 
and 9 are purely static, while there are many applications that involve dynamic 
couplings which are not treated herein. For pointers to other applications and for 
broader perspectives on both the mathematical and physical modeling of complex 
electro-magneto-mechanical couplings the reader is referred to the monographs cited in 
the Bibliography. 
 
2. Electrostatics 
 
It is convenient to begin by introducing a time-independent distribution of charges and 
the associated electromagnetic interactions. Historically, electromagnetic theory has 
been defined as a macroscopic phenomenon, the concept of distributed charges and 
corresponding interactions being an idealization that admits a mathematical description 
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of the experimentally observed phenomena. The charged particles in a distribution 
interact by generating forces on one another, and the total force on any one particle 
results from the presence of all the others. The force acting on a (test) particle with point 
charge e  is a vector function and identifies the electric field at this point. For time-
independent phenomena a particle carrying charge e which is at rest at location x is 
subject to a force f given by 
 

,e=f E    (1) 
 
which defines the electric field vector E  at x , i.e. the force per unit charge on a 
stationary particle. If, now, the particle moves with constant velocity v  in a magnetic 
field, it experiences an additional force perpendicular to its direction of motion and 
proportional to the magnitude of v . The total electromagnetic force on the particle is 
then given by 
 

( )      e= + ×f E v B ,   (2) 
 
which is known as the Lorentz force and which identifies the magnetic induction vector 
B . 
 
 
2.1. Coulomb’s Law 
 
Coulomb, based on experimental data, showed that the electric field E  due to an 
isolated and stationary particle is proportional to its charge e  and varies inversely with 
the square of the distance from the particle. The electric field at the point x  due to a 
point charge e  located at the origin therefore has the form 
 

( ) 3 2
ˆ

,k e k e
r r

= =
x xE x    (3) 

 
where ,r = x  ˆ r=x x  is a unit vector and k is a constant of proportionality that 

depends on the units used. If the particle is located at the fixed point ′x instead of the 
origin then Eq. (3) is replaced by 
 

( ) 3 .k e
′−

=
′−

x xE x
x x

   (4) 

 
In addition, Coulomb was able to quantify the force of interaction between two charged 
particles at rest. If the two particles have charges 1e  and 2e  and are placed at locations 

1x  and 2x , respectively, the interaction force is given by Coulomb’s Law 
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1 2
1 2 3

1 2

,k e e −
=

−

x xf
x x

   (5) 

 
which is attractive if the charges are of the opposite type, repulsive otherwise. This law 
is exact for static (point) particles. 
 
In a similar way, if we consider a point charge e  moving with uniform velocity, the 
resulting magnetic induction B  at position x  relative to the point charge is 
proportional to 
 

2
ˆ

,k e
r
×′=

v xB    (6) 

 
where the constant k′  again depends on the system of units used. Unlike Coulomb’s 
law this is an approximation in the sense that it is only valid in the non-relativistic 
situation (when v  is much smaller than the speed of light and the acceleration is 
negligible). Relativistic effects are not considered in the present work. 
 
2.1.1. Units 
 
In the SI system, the unit of electric charge is the Coulomb (C), the electric current is 
given in Ampères (A), the force in Newtons (N) and the length in meters (m). The 
electric charge of an electron, for example, is 191.602 10  Ce −= − × . The unit of the 
electric field E  is Volt per meter (V m−1) and the magnetic induction B  has units of 
Newton per Ampère meter (N A−1 m−1). The constants of proportionality k  and k′  
introduced in (5) and (6) are chosen such that the electric field and magnetic induction 
are given respectively by 
 

0
2 2

0

ˆ ˆ
, ,

4 4
ee

r r
μ

πε π
×

= =
x v xE B    (7) 

 
where 12 2 1 2

0 8.854 10 C N mε − − −≈ ×  is the permittivity of free space and 0μ , 

which is equal to 7 24 10 NAπ − −× , is the magnetic permeability of free space . It 
turns out that for SI units, the speed c of propagation of electromagnetic effects (the 
speed of light) in free space is given by 
 

2

0 0

1 ,c
μ ε

=    (8) 

 
as will be seen later. 
 
2.2. Charge Conservation 
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The definition of the electric field up to this point assumes the existence of a set of 
discrete point charges. We now expand this concept to include a charge distributed over 
a certain region in space. Consider an infinitesimal element of volume dV  and let 

e dVρ  be the total charge within this element. Then eρ  is the charge density, which 
may be positive or negative and depends, in general, on the position x and time t , i.e. 

( )e e ,tρ ρ= x . 
 
If v  is the mean velocity of the individual charges in dV , then 
 

e ,ρ=J v    (9) 
 
defines the current density. The Lorentz force for a discrete point charge subject to 
electromagnetic fields E  and B has been defined in Eq. (2). For a distribution with 
charge density eρ  and current density J , the Lorentz force per unit volume is given by 
 

eρ= + ×f E J B .   (10) 
 
Consider a fixed volume in space V  bounded by a surface S with unit outward normal 
n . The charge density per unit volume within V  is eρ  and the rate at which charge 
flows across S  is given by ⋅J n  per unit area. The rate of increase of charge within V  
must arise from the influx. Thus, 
 
d d d div d ,
d eV S V

V S V
t

ρ = − ⋅ = −∫ ∫ ∫J n J    (11) 

 
where the divergence theorem has been used to convert the surface integral to an 
integral over the volume V . It follows that 
 

e div d 0,
V

V
t
ρ∂⎛ ⎞+ =⎜ ⎟∂⎝ ⎠

∫ J    (12) 

 
which must hold for arbitrary V . Provided the integrand in (12) is continuous we may 
deduce the local form of the charge conservation equation as 
 

e div 0,
t
ρ∂

+ =
∂

J    (13) 

 
where the partial derivative indicates that the charge density eρ  may also depend on the 
location x  in V . In a steady state situation (no time dependence) we have e 0tρ∂ ∂ =  
and Eq. (13) reduces to 
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div 0=J .   (14) 
 
The corresponding integral form is 
 

d 0
S

⋅ =∫ J S    (15) 

 
for arbitrary closed surfaces S . 
 
2.3. The Field of a Static Charge Distribution 
 
As we have seen, the electric field at a location x  due to an isolated point charge e  
located at the origin is given by Eq. (7)1. Equivalently, this can be written as 
 

( ) 2
0 0

ˆ 1grad
4 4

e e
rrπε πε

⎛ ⎞= = − ⎜ ⎟
⎝ ⎠

xE x .   (16) 

 
When the point charge is placed at the position ′x , the electric field is given by Eq. (4) 
or, alternatively, by 
 

( ) 3
0 0

1grad
4 4

e e
RRπε πε

⎛ ⎞= = − ⎜ ⎟
⎝ ⎠

RE x ,   (17) 

where R = R  and ′= −R x x . 
 
If we consider the charge within the volume V  to be continuously distributed, the point 
charge e  can be replaced by the charge e dVρ  in the volume element dV . If e 0ρ =  
outside the specified volume V , then the electric field at x is given by 
 

( ) ( ) ( ) ( ) ( )e e3
0 0

1 1 1
d grad d

4 4
′ ′ ′ ′= = − ⎛ ⎞

⎜ ⎟
⎝ ⎠

∫ ∫V V
V V

RR
ρ ρ

πε πε
R

E x x x x x , (18) 

 
where the integration is with respect to the ′x  variable, but the grad operator is with 
respect to x and can therefore be taken outside the integral. Thus, 
 

( ) ( ) ( )e

0

1 grad  d
4 V

V
R

ρ
πε

′
′= − ∫

x
E x x .   (19) 

 
The gradient operator in the above equation acts on a scalar function. It is therefore 
convenient to formalize this process by explicitly introducing a scalar potential function 
φ , known as the electrostatic potential. Equation (19) is then written compactly as 
 
( ) ( )gradφ= −E x x ,   (20) 
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where the scalar potential φ  depends on the charge density function eρ  and is given by 
 

( ) ( ) ( )e

0

1 d .
4 V

V
R

ρ
φ

πε
′

′= ∫
x

x x    (21) 

 
Since ( )curl gradφ ≡ 0  for any scalar function φ , we obtain the first equation of 
electrostatics 
 
curl =E 0 .   (22) 
 
Far from the charge distribution the field is approximately that of a point charge situated 
at the origin with a charge equal to the total charge within the distribution. In this case 
we have 1 1R r≈  and the electrostatic potential (21) can be approximated by 
 

( )
04

e
r

φ
πε

≈x ,   (23) 

 
where 

( ) ( )e d
V

e Vρ ′ ′= ∫ x x    (24) 

is now the total charge in V . 
 
Note that the work done in moving a particle of charge e  from 0x  to x  in the presence 
of an electric field E  is given by 
 

0 0
d dW e= − ⋅ = − ⋅∫ ∫

x x
x x

f x E x ,   (25) 

 
where we used the definition of the electric field in Eq. (1), with the sign reversed since 
we are considering the work done against the electric field. Using the electrostatic 
potential φ  introduced in (20), we have 
 

( ) ( )
0

0grad dW e eφ φ φ⎡ ⎤= ⋅ = −⎣ ⎦∫
x
x

x x x ,   (26) 

 
where ( )φ x  can be seen as the potential energy of a particle with unit charge. Equation 

(26) shows that the work done in moving the particle from 0x  to x  is independent of 
the actual path and depends only on the initial and final locations. If the path is closed, 
i.e. the initial and final locations coincide, we have 
 

d 0⋅ =∫ E x    (27) 
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provided φ  is a single-valued function. Note that by Stokes’ theorem Eq. (27) can be 
written 
 

curl d 0
S

S⋅ =∫ E n ,   (28) 

 
where S is an arbitrary oriented open surface. The local form of (28) is (22). 
 
2.3.1. The Field of a Dipole 
 
Consider now a distribution of charge with density ( )eρ ′x  confined to a finite volume 

V , where ′x  is the position vector of a typical point in V  relative to an origin O  
located withinV and e 0ρ =  outside V . Let x  be the position vector of a point P far 
from V at which the electrostatic field is to be calculated (see Figure 1). 
 
Then ′x x  for all ′x  in V , and we may use the Taylor expansion to obtain the 
approximation 
 
1 1 1 1grad
R r r

⎛ ⎞′≡ ≈ − ⋅ ⎜ ⎟′− ⎝ ⎠
x

x x
,   (29) 

 

 
 

Figure 1. Volume V containing a charge distribution with density ( )eρ ′x  such that 

e 0ρ =  outside V , showing field point P  having position vector x  relative to origin 
O  in V  and ′= −R x x . 

 
recalling that r = x . Hence, from (21), the electrostatic potential at x  is approximated 
as  
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( )
0 0

1 1grad
4 4

e
r r

φ
πε πε

⎛ ⎞≈ − ⋅ ⎜ ⎟
⎝ ⎠

x μ ,   (30) 

 
where e  is the total charge in V  given by the formula (24) and μ  is defined by 
 

( ) ( )e d
V

Vρ ′ ′ ′= ∫μ x x x .   (31) 

 
If 0e ≠  then the origin can be translated to the center of charge (analogous to the 
center of mass in mechanics) so that =μ 0 , in which case 
 

( )
0

,
4

e
r

φ
πε

≈x    (32) 

 
which is the field of a point charge e  located at the origin. Thus, the field of a charge 
distribution at a large distance is indistinguishable from that of a point charge. On the 
other hand, if 0e =  and ≠μ 0  we have 
 

( ) 3
0 0

1 1grad .
4 4r r

φ
πε πε

⋅⎛ ⎞≈ − ⋅ =⎜ ⎟
⎝ ⎠

μ xx μ    (33) 

 
This is the potential due to an electric dipole of strength μ  situated at the origin. This is 
equivalent to having two charges of equal and opposite signs very close together. The 
potential of such a combination is given by (33). 
 
 
- 
- 
- 
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