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Summary 
 
Qualitative properties of well-posedness and ill-posedness are examined for problems in 
the equilibrium and dynamic classical non-linear theories of Navier-Stokes fluid flow 
and elasticity. These serve as prototypes of more general theories, some of which are 
also discussed. The article is reasonably self-contained. 
 
I. GENERAL PRINCIPLES 
 
1. Introduction 
 
The mathematical treatment of equations descriptive of phenomena in continuum 
mechanics in particular requires techniques from non-linear partial differential 
equations. Such techniques rely mostly on analysis and geometry (including topology) 
and to a lesser extent (for certain wave motions) on algebra. The resulting qualitative 
properties not only explain how solutions behave but also provide firm foundation for 
numerical procedures.  
 
The governing equations of continuum mechanics themselves are derived from 
postulated integral balance laws of mass, momentum and energy. For smooth processes 
these axioms imply differential equations but on surfaces of discontinuity they generate 
jump conditions. Constitutive assumptions are introduced to account for different types 
of materials and interrelate, for example, motion, stress, heat transfer, electro-magneto-
mechanical effects, and transport phenomena. Invariance requirements and 
thermodynamical restrictions further define the mathematical problem whose 
specification is completed by suitable initial and boundary conditions. This enables 
qualitative and quantitative properties to be determined, and special methods developed 
for particular problems. These notes describe the types of qualitative results possible 
and the mathematical arguments used to achieve them, as well as explaining potential 
difficulties and open problems. Not discussed are special solutions, particular properties 
(e.g., universal deformations, pattern formation), or methods of solutions (e.g., matched 
asymptotic expansions, Weiner-Hopf techniques). Inclusion of such topics, although of 
obvious intrinsic interest, would expand the article considerably beyond its intended 
scope.  
 
Hadamard’s notion of a well-posed problem provides a convenient ordering of our 
treatment. Hadamard (1923) defined a problem to be well-posed when its solution 
exists, is unique, and depends continuously upon the data. Indeed, it was claimed that a 
mathematical model lacking these properties cannot be relevant to any creditable 
phenomenological process, including those of continuum mechanics. Nevertheless, 
while in very broad terms the criticism is obviously justified, caution should be 
exercised in its precise interpretation. The notion of well-posedness remains formal 
until the individual elements and associated function spaces are adequately and 
precisely defined. Moreover, a problem not well-posed according to one set of function 
spaces may become well-posed with respect to another.  
 
Length restrictions limit this account to a description of selected principle themes and 
developments with reference confined to relevant main monograph and research 
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literature. Primary sources are included where these are either reasonably accessible or 
acknowledged classics. Consequently, the publications mentioned are necessarily only 
part of the vast total available and inevitably reflect the authors’ interests. It is definitely 
not intended to imply that those omitted are secondary.  
 
The remainder of Part I amplifies and illustrates the notion of a well-posed problem by 
means of general remarks on existence, uniqueness, and continuous data dependence. 
Spatial and dynamic stability are discussed along with the concept of an ill-posed 
problem. Part II reviews basic principles of continuum mechanics and, in particular, 
their application to the classical non-linear theories of thermoviscous flow and 
thermoelasticity, both of which contain the important special case of heat conduction. 
This comparatively simple theory is used in Part III to discuss various mathematical 
techniques required in Part IV for the discussion of existence, uniqueness, continuous 
data dependence, stability, spatial stability, and ill-posed problems concerned with 
equilibrium and non-equilibrium processes of thermoviscous flows, thermoelasticity, 
and their isothermal counterparts. Part V briefly reports progress in corresponding 
studies of several non-classical theories. Notation is either direct or indicial, when the 
summation and comma conventions are adopted. Further explanation is provided in 
Section 4.  
 
A knowledge is assumed of basic kinematical and mechanical concepts, which may be 
found in standard introductory texts, e.g., Chadwick (1976), Green and Zerna (1968), 
Jauzemis (1967), and Ogden (1984). A limited understanding of analysis and partial 
differential equations will also be useful.  
 
These notes contain hardly any new material. They obviously rely heavily upon 
previously published leading accounts, full acknowledgement to which is given at 
appropriate places in the text. Nevertheless, it is a pleasure to repeat here our 
indebtedness to these authors.  
 
2. The Well-Posed Problem 
 
2.1. Basic Notion 
 
To achieve desirable generality, we formulate the definition of well-posedness in an 
abstract context. Further discussion and elementary examples of the concept may be 
found in standard textbooks on differential equations. We consider topological vector 
spaces X Y Z, ,  with Y Z⊂ . It is supposed that the data is contained in the space X , 
and that the solution u  is a mapping u X Y: → . Notice that data includes the initial and 
boundary data, source terms, material parameters, and the geometry of the space (-time) 
region over which the governing system of partial differential equations is defined, 
while the space Y  represents the set of values of all solutions. The problem is well-
posed when:  
 
1. The mapping u  exists.  
2. The mapping u  is uniquely determined by the data.  
3. The mapping u X Z: →  is continuous at a given element of X .  
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A problem that is not well-posed is ill-posed or improperly posed.  
 
Whether or not a problem is well-posed depends upon the choice of the function spaces 
X Y Z, , , selected usually to be a Hilbert or Sobolev space. Another fundamental 
question concerns the conditions under which well-posedness of a non-linear problem is 
inherited by the corresponding linearized one. Simple counter-examples demonstrate 
that the statement is not universally true, although in fluid mechanics and similar 
dissipative systems, continuous dependence in the linear system under suitable 
conditions, implies that in the non-linear system.  
 
We now discuss in greater detail the constituent elements in the definition of well-
posedness.  
 
2.2. Existence 
 
The basic axioms of conservation of mass, momentum, and energy express the 
mathematical modeling of many physical systems, including those exhibiting chaotic 
behavior, in terms of (stochastic) integral equations involving both volume and surface 
integrals. These are the so-called balance laws in integral form, which reduce to 
conservation laws in the absence of supply terms. Constitutive relations, subject to 
appropriate invariance and thermodynamics restrictions, specify particular continuum 
theories such as elasticity, thermoelasticity, viscoelasticity, the Navier-Stokes fluid, 
magnetohydrodynamics, and multi-polar and Cosserat materials. Prescribed initial and 
boundary conditions complete the specification of the problem. Existence of a solution, 
however defined, cannot immediately be inferred. For example, without sufficient 
smoothness of the boundary, the surface integrals may be meaningless, invalidating 
applications of the divergence theorem. Attempts to model microstructure, granular 
materials, and fractal boundaries encounter such difficulty and have contributed to 
increasing interest in the application of geometric integration theory (Silhavý (1997)), 
unfortunately beyond the scope of these notes. An account of these and related issues is 
provided by Capriz and Podio-Guidugli (2004). Non-smoothness of constitutive 
parameters and other data likewise may prevent volume integrals from becoming 
properly defined. Consequently, an important element in studying existence of solutions 
is to establish minimal smoothness conditions on the data in order that the integral 
equations composing the model are well-defined and possess what is termed a weak 
solution. Weak solutions have limited smoothness, and their discontinuities may 
correspond quite naturally to certain static and dynamical physical phenomena, for 
instance, phase boundaries, rupture, cracks, cavitation, and shock waves. Further 
conditions must be imposed in order to reduce the integral equations to a system of 
partial differential equations, whose solution in a relevant smoothness class must be 
separately established. Such solutions are termed strong when they are continuous 
together with their spatial and temporal derivatives to sufficient order. Weak solutions 
must be discussed in the context of Sobolev and other abstract functional spaces, or in a 
distributional sense.  
 
Especially in dynamics, well-known one-dimensional examples, many cited in the 
books by Straughan (1998), Dafermos (2006) and Tartar (2006), demonstrate that 
globally (in time) smooth solutions are not to be expected. We select one example from 
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elasticity due to F. John (1974), (see also John (1979, 1981)), in which the spatial and 
temporal scalar variables are x  and t  respectively and ( )u x t,  is the scalar 
displacement. The equation of motion in the absence of body force becomes  
 

2

2

( )xu u
x t

σ ,∂ ∂
= ,

∂ ∂
       (1) 

 
where without loss the uniform density is supposed equal to 1, and a subscript comma 
denotes partial spatial differentiation. The second order equation (1) may be rewritten as 
the first order system  
 

0U UA
t x

∂ ∂
+ = ,

∂ ∂
       (2) 

 
where the vector U  and matrix A  are given by  
 

0 1
( ) 0

w
U A

v wσ
−⎡ ⎤ ⎡ ⎤

= , = ,⎢ ⎥ ⎢ ⎥′−⎣ ⎦ ⎣ ⎦
      (3) 

 
and w u x v u t= ∂ /∂ , = ∂ /∂ , while a superposed prime indicates differentiation with 
respect to the argument of a function.  
 
Suppose that system (2) is strictly hyperbolic, that is, for each u , the matrix A  has 
distinct real eigenvalues and associated real eigenvectors. Consider Lipschitz 
continuous deformations which depend upon the variables x t,  only through the single 
function ( )x tφ , , and set  
 

( ) ( )U x t H φ, = ,        (4) 
 
where ( )H φ′  is an eigenvector of A  with eigenvalue ( )a φ . Consequently, on 
substitution in (2), we obtain  
 

( ) 0a
t x
φ φφ∂ ∂
+ = ,

∂ ∂
       (5) 

 
and along characteristic curves, defined by  
 

( )dx a
dt

φ= ,         (6) 

 
we have that ( )x tφ , =  constant. Let ( 0) ( )x xφ φ, = . Then, by (6), the characteristic 
curve through the point 0( 0)x ,  is the straight line 0 0( ( ))x x a x tφ= + . Next, assume that 

σ  is such that 0( ( ))a xφ  decreases with 0x  and consider the characteristic lines through 

the initial points 1( 0)y ,  and 2( 0)y ,  where 1 2y y< . Then 1 2( ( )) ( ( ))a y a yφ φ> , and the 
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two characteristic lines intersect at critical time critt  given by  
 

2 1
crit

1 2( ( )) ( ( ))
y yt

a y a yφ φ
−

= .
−

      (7) 

 
The vector function U  is constant along a characteristic curve and therefore at the 
intersection has conflicting values. We conclude that at critt  the solution is neither 
continuous nor differentiable, and consequently smooth solutions cannot exist globally 
with respect to time. For critt t> , a solution, if it exists, must be a weak solution here 
defined as satisfying  
 

0
Q

B C dx
x t

∂Φ ∂Φ⎛ ⎞+ = ,⎜ ⎟∂ ∂⎝ ⎠∫       (8) 

 
for all vector test functions 2

0 ( , )C Q∞Φ∈ , where Q  is the space-time region over 
which (1) is defined, and the matrices B C,  are given by  
 

0 0
0 0

v
B C

v w
σ −⎡ ⎤ ⎡ ⎤

= , = .⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦
      (9) 

 
Alternative definitions of a weak solution are possible. (See, for example, Marsden and 
Hughes (1983), Ball (2002), Dafermos (2006), and Tartar (2006)).  
 
The broad array of methods deployed to investigate existence include spectral analysis, 
direct methods of the calculus of variations, the Lax-Milgram lemma, the implicit 
function, fixed point and inverse function theorems for equilibrium problems; and 
energy arguments, the Galerkin method, and contractive semi-group theory for 
problems in dynamics. Some of these techniques are described in later Sections.  
 
2.3. Uniqueness 
 
The importance of knowing whether or not a solution is unique for given data is almost 
self-evident. For example, such information is vital for numerical evaluation, and for 
ensuring completeness of solutions constructed by semi-inverse and similar methods.  
 
But uniqueness is not necessarily a universally desirable property. Bifurcation and 
buckling would be impossible without loss of uniqueness in the associated (linear) 
problem. Turbulence and cavitation would not occur without failure of uniqueness in 
the non-linear problem, and indeed in non-linear elastostatics there are well-known 
counter-examples demonstrating that unqualified uniqueness is physically untenable. In 
other systems, there may be uniqueness of smooth solutions but non-uniqueness of 
weak solutions. To illustrate the last remark, consider the one-dimensional Burgers 
equation (cp., Dafermos (1975, 2006))  
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0 0u uu t
t x

∂ ∂
+ = , ≥ .

∂ ∂
      (10) 

 
Suppose (10) is defined on the whole real line  with initial data ( ) 1v x = +  for 0x < , 
and ( ) 1v x = −  for 0x > . The characteristic curves are respectively x t± , and the 
piecewise smooth solution is ( ) 1u x t, = +  in the quarter plane 0 0x t< , >  and 

( ) 1u x t, = −  in the quarter plane 0 0x t> , > , with the axis 0 0x t= , >  being a line of 
shock discontinuity. The piecewise smooth solution satisfying different initial data 

( ) 1 0v x x= − , < , and ( ) 1 0v x x= + , > , has characteristic curves x t∓ , and is given by 
( ) 1u x t, = ±  in the quarter planes 0 0x t> , >  and 0 0x t< , > , respectively. However, a 

second piecewise smooth solution with the same initial data is given by  
 

( ) 1 0u x t x t t, = − , < − , > ,      (11) 
 

0x t x t t
t

= , − < < , > ,       (12) 

 
1 0t x t= + , < , > ,       (13) 

 
with shocks occurring on the lines 0x t± = . It is easy to check that the Rankine-
Hugoniot condition is satisfied by both solutions, so that clearly there is non-
uniqueness. Non-uniqueness similarly may be shown for the first example.  
 
Uniqueness may be recovered when the solution is subject to a suitable selection 
criterion satisfied by at most one solution. Various criteria have been proposed each 
motivated by a different physical argument. For hyperbolic conservation laws in m , 
admissible solutions are assumed to satisfy the inequality  
 

1
m
i i i

S q h
t = ,

∂
+ Σ ≤ ,

∂
       (14) 

 
where the S  is a scalar entropy function, nq∈  the entropy flux, and h∈  the 
entropy production.  
 
Inequality (14) must be interpreted in the sense of distributions when weak solutions are 
considered. In continuum mechanics, selection criteria often correspond to entropy 
production inequalities. A full account is provided by Dafermos (2006).  
 
Uniqueness in linear systems is equivalent to proving that at most only the trivial 
solution exists for homogeneous data, whereas in non-linear systems it must be shown 
that specified data admit at most one solution within a given function class consistent 
with that for existence. When discontinuity surfaces develop, an appropriate function 
space for both equilibrium and dynamic solutions is the class of functions of bounded 
variation.  
 
Energy arguments are amongst the most frequently employed to establish uniqueness in 
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linear and non-linear systems, especially those of continuum mechanics. There are, 
however, many other approaches, including analytic functional methods used for 
continuous data dependence, and differential inequalities and convexity techniques for 
spatial stability and ill-posed problems respectively. A selection is illustrated later.  
 
2.4. Continuous Data Dependence 
 
Continuous data dependence is of practical and numerical importance. Actual physical 
measurements are seldom possible to the accuracy required by mathematical 
prescription and data in this respect contain unavoidable error. Furthermore, a 
measurement cannot be taken at a precise point in space or time, but is either in some 
neighborhood of the given point, or represents an average over a space-time interval 
about the point. The continuous distribution of data usually assumed in mathematical 
treatments can be obtained only by theoretical interpolation from data measured 
“pointwise” in the sense just described. Again, it is seldom absolutely certain that initial 
data is simultaneously measured over a spatial region at the same instant of time. Errors 
also are introduced by imprecise constitutive parameters, or geometry of the region. 
Numerical data can be prescribed to only limited accuracy in numerical computations. 
In all these situations, it is vital to know whether or not small errors in data generate 
correspondingly small errors in the solution. The conclusion has been proved in 
standard problems of elliptic, parabolic, and hyperbolic type, but fails, by definition, for 
ill-posed problems. Nevertheless, it is later explained how continuous data dependence 
in certain ill-posed problems may be recovered in a weakened sense for classes of 
constrained solutions.  
 
Continuous data dependence is closely related to the concept of continuity, and in 
discussing this relationship it is preferable to introduce the same abstract (topological) 
function spaces used to treat existence and uniqueness. The next Section explains how 
continuous dependence upon initial data in dynamic problems is related to, and is 
refined by, the notion of stability and its associated theorems. Meanwhile, as a basis for 
subsequent discussion, we elaborate upon the mathematical definition of continuous 
data dependence.  
 
A neighborhood is defined in terms of a positive-definite function : X Xρ × →  with 
the properties  
 
1. ( ) 0x y x y Xρ , ≥ , ∀ , ∈ .   
2. ( ) 0x y x yρ , = ⇔ = .   
 
These functions define a norm on the respective topological spaces provided the 
following additional conditions are satisfied:  
 
1. 1. ( ) ( )x y y xρ ρ, = , .  
2. 2. ( ) ( ) ( )x y x z y zρ ρ ρ, ≤ , + , ,   
 
where x y z X, , ∈ .  
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The precise definition of continuous dependence (or continuity of maps) is given by:  
 
Definition 1 (Continuous Dependence) Let 1ρ  and ρ  be positive definite functions 
defined on the spaces X X×  and Y Y×  respectively, and let Xφ ∈  and Xψ ∈  
correspond to data for solutions u v X Y, : →  respectively. The solution u  is continuous 
at φ  if and only if for each 0ε >  there exists ( ) 0δ ε >  such that  
 

1( ) ( )v uρ ψ φ δ ρ ε, < ⇒ , < .      (15) 
 
The definition applies equally to static and dynamic problems, but in dynamic problems 
the concept of dependence upon initial data corresponds to that of stability. Indeed, we 
regard stability as a property of dynamical perturbations of a system whether in 
equilibrium or in motion. We avoid the convention, especially in elasticity, of adopting 
the minimum energy criterion as a definition of stability. The criterion has encountered 
justified criticism, and at best is a test for stability whose mathematical proof awaits a 
complete existence theory for elastodynamics.  
 
Because of its practical importance, we devote the next subsection to a brief discussion 
of the fundamental elements of stability theory based primarily upon the treatments by 
Movchan (1960a,b), Gilbert and Knops (1967), and Knops and Wilkes (1973).  
 
2.5. Stability 
 
A solution either in equilibrium or in motion is stable when perturbed initial data 
produce small disturbances as the system evolves with time. When the disturbances 
vanish as time increases indefinitely, the solution is said to be asymptotically stable.  
 
It is obvious from these rough ideas that the time variable t  is a preferred variable. 
Consequently, let us consider a time interval of existence, [0 ]T, , possibly semi-infinite 
in length, and the evolutionary maps [0 ]T Yφ : , → , where Y  is the function space in 
which the solution ( )u x t,  is represented by a sequence of elements as time evolves. Let 

([0 ] )T Y, ,B  designate the set of functions defined on [0 ]T,  taking values in Y . Let 
initial data belong to the set X  equipped with the positive-definite function 1ρ , and let 
the space Y  be equipped with the positive-definite function 2ρ .  
 
Definition 2 (Liapunov stability) The solution ([0 ] )u T Y∈ , ,B  is Liapunov stable if 
and only if the mapping φ  from X  to ([0 ] )T Y, ,B  is continuous at u . That is, for 

([0 ] )v T Y∈ , ,B  and for each 0ε >  there exists ( ) 0δ ε >  such that 1( (0) (0))u vρ δ, <  
implies ( )u vρ ε, < , where  
 

2
[0 ]

( ) sup ( ( ) ( ))
t T

u v u t v tρ ρ
∈ ,

, = , .       (16) 

 
Definition 3 (Asymptotic stability) The solution ([0 ] )u T Y∈ , ,B is asymptotically 
stable if and only if (a) u is stable; and (b) for ([0 ] )v T Y∈ , ,B  there exists 0δ >  such 
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that 1( (0) (0))u vρ δ, <  implies 2 ( ( ) ( ))u t v tρ ,  tends asymptotically to zero as t →∞ . 
 
Definition 4 (Instability) A solution that is not stable is unstable. Equivalently, a 
solution u B∈ ([0 ] )T Y, ,  is Liapunov unstable if and only if the mapping from X  to 

([0 ] )T Y, ,B  is discontinuous at u . That is, ([0 ] )u T Y∈ , ,B  is unstable if and only if for 
([0 ] )v T Y∈ , ,B  there exists 0ε >  such that for all 0δ >  there holds  

 
1( (0) (0)) ( )u v u vρ δ ρ ε, < ⇒ , ≥ .      (17) 

 
These are natural and precise definitions in terms of dynamics which generalize 
corresponding Lagrange-Dirichlet definitions for discrete systems. Obviously, the 
choice of positive-definite functions 1 2ρ ρ,  crucially affects whether or not a solution is 
stable. A given solution to the same initial boundary value problem may be stable or 
unstable according to the choice of positive-definite functions and the underlying spaces 
X Y, . Examples illustrating this point are described by Knops and Wilkes (1973) and 
extend those familiar in the calculus of variations.  
 
It immediately follows from these definitions and from well-known properties of 
continuity that a stable solution u  is unique, and that the corresponding mapping φ  is 
bounded at u .  
 
There are two general methods for establishing stability, namely, (a) maximum 
principles; and (b) the direct, or second, method of Liapunov. We dispose immediately 
of maximum principles since the method simply states that the solution ( )u t  is stable if 
there exists a bounded real function ( )M t  on [0 ]T,  such that for ([0 ] )v T Y∈ , ,B  we 
have  
 

1( ) ( ) ( (0) (0))u v M t u vρ ρ, ≤ , .       (18) 
 
The solution u  is uniformly stable when ( )M t  is independent of t , whereas when 

( ) 0M t →  as t →∞  it is asymptotically stable. Inequalities of type (18) frequently 
occur in stability analyzes for non-linear fluid dynamics using the so-called energy 
method when the kinetic energy is used as a positive-definite measure. They likewise 
appear in discussions of spatial stability and stabilization of ill-posed problems.  
 
The other main method for stability, commonly referred to as Liapunov’s second 
method, generalizes the Lagrange-Dirichlet theorem for discrete systems. It finds formal 
application to non-linear elastodynamics and assists in clarifying concepts associated 
with the energy criterion for stability. Liapunov’s theorem, originally developed for 
ordinary differential equations, was extended to continuous systems by Movchan 
(1960a, 1960b).  
 
Theorem 1 (Liapunov stability) The solution ([0 ] )u T Y∈ , ,B  is stable if and only if 
there exist positive-definite functions tV , where [0 ]t T∈ , , defined on Y Y×  with the 
properties that  
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(a) for given real 0ε >  there exists ( ) 0δ ε >  such that for all ([0 ] )v T Y∈ , ,B   
 

1( (0) (0)) ( )u v V u vρ δ ε, < ⇒ , < ,  (19) 
 
(b) for given real 0η >  there exists real 0ζ >  such that for v B∈ ([0 ] )T Y, ,   
 

( ) ( )V u v u vζ ρ η, < ⇒ , < ,      (20) 
 

where  
 

[0 ]
( ) sup ( ( ) ( ))t

t T
V u v V u t v t

∈ ,
, = , .      (21) 

 
We remark that the solution u  is asymptotically stable when Condition (a) is 
supplemented by  

 
lim ( ( ) ( )) 0tt

V u t v t
→∞

, = .       (22) 

 
Movchan (1960a) replaces Condition (a) by the following two subordinate 
conditions, which, however, are only sufficient for stability:  

 
(c) given real 0ε >  there exists real ( ) 0δ ε >  such that  
 

1 0( (0) (0)) ( (0) (0))u v V u vρ δ ε, < ⇒ , < .    (23) 
 
(d) ( ( ) ( ))tV u t v t,  is non-increasing with respect to t ; that is  
 

0( ) ( (0) (0))V u v V u v, ≤ , .       (24) 
 
The proof of these statements depends upon the composition law for continuous maps, 
and is given in the references previously cited.  
 
Liapunov’s theorem states necessary and sufficient conditions for stability and 
consequently yields necessary and sufficient conditions for instability. Nevertheless, it 
is convenient to state explicit conditions which, of course, should automatically exclude 
the trivial instability due to non-unique and unbounded solutions.  
 
Theorem 2 (Liapunov instability) The solution ([0 ] )u T Y∈ , ,B  is unstable if and only 
if there exist positive-definite functions tV  that satisfy  
(a) there is 0ε >  such that for all 0δ >  there holds  
 

1( (0) (0)) ( )u v V u vρ δ ε, < ⇒ , ≥ ,     (25) 
 
(b) for given 0η >  there exists ( ) 0ζ η >  such that  
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( ) ( )u v V u vρ ζ η, < ⇒ , < .       (26) 
 
A principal objective is to establish necessary and sufficient conditions for a solution to 
satisfy one or other of the above stability definitions. A major obstacle for many non-
linear conservative systems is the lack of a complete global existence theory so that 
many of the known results remain formal. 
 
 
- 
- 
- 
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