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Summary 
 
Transients can introduce large pressure forces and rapid fluid accelerations into a piping 
system. These disturbances may result in pump and device failures, system fatigue or 
pipe ruptures, and even the backflow/intrusion of contaminated water. Many transient 
events can lead to column separation, which can result in catastrophic pipeline failures. 
Thus, transient events can cause health risks and can lead to increased leakage, 
decreased reliability and breaches in the pipe system integrity. Transient flow 
simulation has become an essential requirement for assuring safety and the safe 
operation of drinking water distribution systems. This chapter introduces the concept 
and fundamentals of hydraulic transients, including the causes of transients, governing 
equations, numerical methods for predicting their location, magnitude and duration, and 
practical guidelines for their suppression and control. Such capabilities greatly enhance 
the ability of water utilities to evaluate cost-effective and reliable water supply 
protection and management strategies and safeguard public health. 
 
1. Introduction 
 
Water hammer and shock loading refer to rapid and often large pressure and flow 
fluctuations resulting from transient flow conditions in pipes transporting fluids. 
Transient flow analysis of the piping system is often more important than the analysis of 
the steady state operating conditions that engineers normally use as the basis for system 
design. Transient pressures are most significant when the rate of flow is changed 
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rapidly, such as resulting from rapid valve closures or pump stoppages. Such flow 
disturbances, whether caused by design or accident, may create traveling pressure and 
velocity waves of excessive magnitude. These transient pressures are superimposed on 
the steady state (static) conditions present in the line at the time the transient occurs. 
The total force acting within a pipe is obtained by summing the steady state and 
transient pressures in the line. The severity of transient pressures must thus be 
accurately determined so that the pipes can be properly designed to withstand these 
additional shock loads. In fact, pipes are often characterized by their “pressure ratings” 
(or pressure classes) that define their mechanical strength and have a significant 
influence on their cost. 
 
Transient events have been responsible for equipment failure, pipe rupture, separation at 
bends, and the backflow of dirty liquid into the distribution system via intrusion. High-
flow velocities can remove protective scale and tubercles and increase the contact of the 
pipe with oxygen, all of which will increase the rate of corrosion. Uncontrolled pump 
shutdown can lead to the undesirable occurrence of water-column separation, which can 
result in catastrophic pipeline failures due to severe pressure rises following the collapse 
of the vapor cavities. Vacuum conditions can create high stresses and strains that are 
much greater than those occurring during normal operating regimes. They can cause the 
collapse of thin-walled pipes or reinforced concrete sections, particularly if these 
sections were not designed (i.e., pipes with a low pressure rating) to withstand such 
strains.  
 
Cavitation occurs when the local pressure is lowered to the value of vapor pressure at 
the ambient temperature. At this pressure, gas within the liquid is gradually released and 
the liquid starts to vaporize. When the pressure recovers, liquid enters the cavity caused 
by the gases and collides with whatever confines the cavity (i.e., another mass of liquid 
or a fixed boundary) resulting in a pressure surge. In this case, both vacuum and strong 
pressure surges are present, a combination that may result in substantial damage. The 
main difficulty here is that accurate estimates are difficult to achieve, particularly 
because the parameters describing the process are not yet determined during design. 
Moreover, the vapor cavity collapse cannot be effectively controlled. In less drastic 
cases, strong pressure surges may cause cracks in internal lining, damage connections 
between pipe sections, and destroy or cause deformation to equipment such as pipeline 
valves, air valves, or other surge protection devices. Sometimes the damage is not 
realized at the time, but results in intensified corrosion that, combined with repeated 
transients, may cause the pipeline to collapse in the future.  
 
Transient events can have significant water quality and health implications. These 
events can generate high intensities of fluid shear and may cause re-suspension of 
settled particles as well as biofilm detachment. Moreover, low pressure transients may 
promote the collapse of water mains, leakage into the pipes at loose joints, cracks and 
seals under sub-atmospheric conditions, and back-siphonage and potential intrusion of 
untreated, possibly contaminated groundwater in the distribution system. Pathogens or 
chemicals in close proximity to the pipe can become a potential contamination source, 
where continuing consumption or leakage can pull contaminated water into the 
depressurized main. Recent studies have confirmed that soil and water samples 
collected immediately adjacent to water mains can contain high fecal coliform 
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concentrations and viruses. This is especially significant in systems with pipes below 
the water table. Locations with the highest potential for intrusion were sites 
experiencing leaks and breaks, areas of high water table, and flooded air-vacuum valve 
vaults. In the event of a large intrusion of pathogens, the chlorine residual normally 
sustained in drinking water distribution systems may be insufficient to disinfect 
contaminated water, which can lead to damaging health effects. A recent case study in 
Kenya showed that in the event of a 0.1% raw sewage contamination, the available 
residual chlorine within the distribution network will not render the water safe.  
 
Transient events that can allow intrusion to occur are caused by sudden changes in 
liquid velocity due to loss of power, sudden valve or hydrant closure or opening, a main 
break, fire flow, or an uncontrolled change in on/off pump status. Transient-induced 
intrusions can be minimized by knowing the causes of pressure surges, defining the 
system’s response to surges, and estimating the system’s susceptibility to contamination 
when surges occur. Therefore, water utilities should never overlook the effect of 
pressure surges in their distribution systems. Even some common transient protection 
strategies, such as relief valves or air chambers, if not properly designed and 
maintained, may permit pathogens or other contaminants to find a “back door” route 
into the potable water distribution system. Any optimized design that fails to properly 
account for pressure surge effects is likely to be, at best, suboptimal, and at worst 
completely inadequate.  
 
Pressure transients in liquid distribution systems are inevitable and will normally be 
most severe at pump stations and control valves, in high-elevation areas, in locations 
with low static pressures, and in remote locations that are distanced from overhead 
storage. All systems will, at some time, be started up, switched off, undergo unexpected 
flow changes, and will likely experience the effects of human errors, equipment 
breakdowns, earthquakes, or other risky disturbances. Although transient conditions can 
result in many abnormal situations and breaches in system integrity, the engineer is 
most concerned with those that might endanger the safety of a plant and its personnel, 
that have the potential to cause equipment or device damage, or that result in 
operational difficulties or pose a risk to the public health.  
 
Transient pressures are difficult to predict and are system dependent, including specific 
system layout, configuration, design and operation. Engineers must carefully consider 
all potential dangers for their pipe designs and estimate and eliminate the weak spots. 
They should then embark upon a detailed transient analysis to make informed decisions 
on how best to strengthen their systems and ensure safe, reliable operations. 
 
2. Causes of Fluid Transients 
 
Fluid transient events are disturbances in the liquid caused during a change in operation, 
typically from one steady state or equilibrium condition to another (Figure 1). The 
principal components of the disturbances are pressure and flow changes at a point that 
cause propagation of pressure waves throughout the distribution system. The pressure 
waves travel with the velocity of sound (acoustic or sonic speed), which depends on the 
elasticity of the liquid and that of the pipe walls. As these waves propagate, they create 
transient pressure and flow conditions. Over time, damping actions and friction reduces 
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the waves until the system stabilizes at a new steady-state. Normally, only extremely 
slow flow regulation can result in smooth transitions from one steady-state to another 
without large fluctuations in pressure or flow. 
 

 
 

Figure 1. Example steady state transition after a period of rapid transients. 
 
In general, any disturbance in the liquid generated during a change in mean flow 
conditions will initiate a sequence of transient pressures (waves) in the pipe system. 
Disturbances will normally originate from changes or actions that affect fluid devices or 
boundary conditions. Typical events that require transient considerations include: 
  
• Pump shutdown or pump trip (loss of power) 
• Pump start-up  
• Valve opening or closing (variation in cross-sectional flow area);  
• Changes in boundary pressures (e.g., losing overhead storage tank, adjustments in 

the liquid level at reservoirs, pressure changes in tanks, etc.);  
• Rapid changes in demand conditions (e.g., hydrant flushing);  
• Changes in transmission conditions (e.g., main break or line freezing); 
• Pipe filling or draining – air release from pipes; and 
• Check valve or regulator valve action 
 
If special precautions are not taken, the magnitude of the resulting transient pressures 
can be sufficient to cause severe damage. Figures 2 to 5 describe four typical hydraulic 
transient problems. The problem of shutting down a pump is illustrated in Figure 2. 
When the pump is suddenly shutdown, the pressure at the discharge side of the pump 
rapidly decreases and a negative pressure wave (which reduces pressure) begins to 
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propagate down the pipeline toward the downstream reservoir. When the negative 
pressure wave reaches the high point (which already has a relatively low pressure due to 
the higher elevation) in the pipe, the pressure can drop below atmospheric to reach 
vapor pressure. At this pressure, gas within the liquid is gradually released and the 
liquid starts to vaporize (column separation). On subsequent cycles of the transient 
when the pressure recovers, cavity can collapse generating a large pressure surge spike. 
On the suction side of the pump, the solid sloping line represents the initial hydraulic 
grade and the dashed straight line depicts the final hydraulic grade, while start-up 
transients are not shown. 
 

 
Figure 2. Transient caused by pump shutdown. 

 

 
 

Figure 3. Transient caused by pump startup. 
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The problem of pump startup transient is illustrated in Figure 3. When a pump is started, 
the pressure at the discharge side of the pump rises sending a positive pressure wave 
(which increases pressure) down the pipeline toward the downstream reservoir. The 
resulting peak pressure can cause the pipe to collapse if the pressure rating of the pipe is 
less than the maximum surge pressure. When the initial positive pressure wave reaches 
the downstream reservoir, it is converted into a negative pressure wave which 
propagates back to the pump and may induce cavitation. On the suction side of the 
pump, the solid straight line represents the initial hydraulic grade and the dashed sloping 
line depicts the final hydraulic grade, while shutdown transients are not shown. 
 
Opening and closing a valve too fast can also result in severe hydraulic transients and 
are illustrated in Figures 4 and 5, respectively. When the valve in Figure 4 is rapidly 
opened, a negative pressure wave is initiated at the valve and propagates upstream 
toward the reservoir decreasing the pressure in the pipe. Similar to the pump shut down 
scenario, the initial negative surge can drop to vapor pressure causing cavitation in the 
pipe. In the second example (Figure 5), rapidly closing the downstream valve generates 
a positive pressure wave at the valve that propagates toward the upstream reservoir 
increasing the pressure in the pipe. 
 

 
Figure 4. Transient caused by rapid valve opening. 

 

 
Figure 5. Transient caused by rapid valve closure. 
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Pipe systems must be designed to handle both normal and abnormal operating 
conditions. If an analysis indicates that severe transients may exist, the main solution 
techniques generally used to mitigate transient conditions are: 
 
• Installation of stronger (higher pressure class) pipes; 
• Re-routing of pipes; 
• Improvement in valve and pump control/operation procedures;  
• Limiting the pipeline velocity; 
• Reducing the wave speed; 
• Increasing pump inertia (e.g., fitting a flywheel between the pump and motor); and 
• Design and installation of surge protection devices. 
 
 
 
- 
- 
- 
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