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Summary  
 
Much has changed since the days when oil was shipped in barrels carried by horse-
drawn wagons, as the rapid expansion of technology over the past several decades in 
other industries has had a parallel impact in the oil and gas industry and in pipeline 
systems. Proactive integrity management can help offset public perceptions of system 
safety while ensuring the existing and future assets perform at maximum utilization.  
  
Analysis of incident statistics indicate the expectation that higher pipeline pressure is 
associated with an increased incident frequency is no longer realized, which reflects the 
emergence of incident causes beyond the direct control of the industry. Managing this 
scenario will require the pipeline industry to work broadly with other stakeholders. 
System condition monitoring and the use of appropriate criteria to assess and prioritize 
the need and timeline for rehabilitation or changes in operation is central to integrity 
management. While tools exist currently and are broadly used to monitor condition, 
they involve some degree of uncertainty such that a finite probability remains incidents 
will occur that are currently beyond the best efforts of the pipeline owner/operator. 
Opportunities exist for the pipeline industry in collaboration with the government and 
viable technology developers to address threats that can be proactively managed by 
developing appropriate (practical, effective, reliable …) technology. Near-term 
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examples include leak, limit-states, and encroachment and contact detection, which are 
emerging today, while the longer term holds promise for “smart” pipeline systems that 
recognize pending problems and respond prior to an incident occurring – while 
redirecting product to avoid firm-delivery issues and bottlenecks. With existing 
Supervisory Control and Data Acquisition (SCADA) technology as a backbone much 
seems plausible using sensor-based condition monitoring to detect such concerns, to 
balance network demands to relieve bottlenecks and manage upsets, and to deploy 
emergency response to maximize public safety and environmental protection.   
 
1. Introduction 
 
As petroleum-based products were found merchantable for lighting and other purposes, 
demand focused in larger urban centers motivated developing the means to move these 
products from oil fields in the supply basin to nearby market centers. Pipelines were 
eventually recognized as the safest and most economical means to transport petroleum 
products from the supply basis and import locations to the markets. The purpose of this 
paper is to provide some history on the evolution of pipeline systems, to detail 
differences in pipeline systems depending on the products transported, and thereafter to 
present integrity considerations in the management of such systems. Because petroleum 
products were first discovered in the United States (US), this early history is focused 
there.  
 
2. Historical Background for Pipeline Systems 
 
Early on, petroleum products were moved from the oil fields to nearby railheads via 
horse-drawn carts using large wooden barrels, the volume of which remains in use 
today as the unit of measure for transported quantity. This mode of transportation is 
illustrated in a photograph on the Association of Oil PipeLines (AOPL) website 
(http://www.pipeline101.com/history). Such transport remained effective so long as 
demand was limited and supply basins were located close to the markets, which was the 
case for early demand that supplied lighting with oil from fields located in sites such as 
Pennsylvania, Texas, and California – which were close to the major demand centers.  
As petroleum products were found merchantable, their demand grew whereas nearby 
resources began to dwindle, which forced deeper wells at supply basins at sites 
increasingly remote to the markets. These changes paved the way for pipelines to 
replace aboveground modes of shipping, although the barrel remained the measure of 
quantity delivered. This scenario continues in play today, with current supply being 
imported, whereas domestic supplies are sought from remote and pristine areas like 
Alaska. In all such cases, pipelines are used to move the imported as well as domestic 
supply to markets, whether in the lower forty-eight US states or in countries all around 
the world.  
As the supply basins become increasingly remote, a system of pipelines developed to 
transport these products from the supply points to the market centers, terminals, or hubs. 
Thus a cross-country infrastructure of pipelines develops that traverses throughout the 
country, with eventual interconnects with border countries. Construction tended to 
occur first through the regions traversed the easiest, and leading to the largest markets – 
tracking the so-called “path of least resistance.”  
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Early construction often traversed farm-fields, through which construction made use of 
backhoes and various ditching practices, with the pipeline built along and lowered onto 
the ditch bottom as a string. Because the ditch bottom was smooth it also served as the 
foundation for the pipeline, with native soil returned to the ditch as bedding and 
padding, as well as cover for the pipeline. A-frames were used to lower-in the pipe 
string, which gave way to side-booms beginning in the 1930s. Figure 1 illustrates the 
evolution of construction practices. This figure indicates machine-made bends replaced 
couplings and other historical field-bending practices used to change the direction of the 
pipeline beginning in the 1940s. As the threat of corrosion was recognized, over-the-
ditch coating methods were developed, with such coatings also beginning broad use in 
the 1940s. About this same time quality girth-welding practices became prevalent, 
replacing the early oxy-acetylene practices. Figure 1 summarizes the evolution of these 
and many other historic pipeline construction practices, indicating the timeline over 
which these practices were prevalent, specifically in regard to the US for this figure.  

 

 
 

Figure 1. Evolution of construction practices 
 

In analogy to Figure 1, Figure 2 presents the historical evolution of the line pipe used in 
constructing the US pipeline infrastructure, which was the first such system. Processes 
noted there include furnace butt-welding, continuous butt-welding, lap and hammer 
welding, low-frequency electric resistance welding (ERW), flash welding, single 
submerged arc welding (SAW), some early seamless (SMLS) variations, high-
frequency ERW (HFERW), and double submerged arc welding (DSAW) as either 
straight seam or spiral seam. Of these, the continuous butt-weld SMLS, HFERW, and 
DSAW processes remain in widespread use today worldwide.  
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Figure 2. Evolution of pipe making practices 
 

New technology coupled, with economic drivers, leads to the introduction of new 
processes along with the modification or improvement of existing processes, followed 
by the abandonment of others to enhance safety and control capital expenditures 
(CAPEX) and operating expenditures (OPEX). Acceptance of a new product like, line 
pipe, fittings, prime-movers, and so on, is controlled by engineering specifications and 
quality control procedures at the time the product is manufactured. Such specifications 
are developed based on the parameters of the pipeline system’s service. Quality control 
(QC) and quality assurance (QA) procedures often based on nondestructive inspection 
(NDI) are used to verify that the product or system as delivered meets the engineering 
specifications. As time passes and technology evolves, more stringent engineering 
specifications and improved QA/QC procedures develop, which can effectively 
eliminate incidents associated with the line pipe and pipeline construction aspects of the 
pipeline system.  

 

 
 

Figure 3. Contrasting vintage to modern equipment a) 1950s vintage auger loaded 
cylindrical-screen machine b) modern integral in-line flat-screen bed and pad machine 
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Because when possible construction first tends to occur through the regions traversed 
the easiest on paths leading to the largest markets, in the US and where possible 
elsewhere in the world, pipeline construction first traversed the flatlands. Construction 
through wet or swampy areas as well as hilly or mountainous areas occurs when such 
features cut through the path between the supply site and the market. But, as time passes 
and/or demand shifts, or the topography of the country dictates, pipelines have been 
built across quite difficult geographic boundaries between the supply points and the 
markets. Where mountains are encountered, or construction passes through hard, rocky 
terrain –appropriate protection is afforded the pipeline. Likewise, where large rivers 
must be traversed the pipeline crosses these features with safety as a primary concern – 
which in today’s construction often occurs via directional drilling to pass the pipeline 
below the riverbed or past other surface obstructions. Finally, where instability can 
occur as in earthquake-prone regions, or the pipeline must cross ecologically unusual or 
pristine regions, provision is made to do this safely while protecting the environment 
and ensuring the survival of the flora and fauna. Directional drilling equipment, ditching 
machines, bedding and padding machines, and so on, have evolved to meet these 
challenges.  
 
For example, Figure 3 shows the evolution of bedding and padding machines, through a 
contrast of the 1950s versus current technology. Comparison of these views indicates 
similar concepts are used, the major differences being efficiency and effectiveness to 
enhance productivity while ensuring safety.  

 

 
 

Figure 4. Directional drilling (at pull-through) 
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Figure 4 shows a view in the pull-stage of a directional drill, a process that can place the 
pipeline well below the river bottom, thus avoiding possible failure due to scour as can 
occur for pipelines laid on the bottom. This is central to avoiding failures due to 
flooding.  

 
Figure 5 shows construction through mountainous territory that often tracks ridges 
where feasible, and so provides reasonable access while limiting the ecological upset. 
There are many challenges in such construction, particularly ascending and descending 
major grades.  

 

 
 

Figure 5. Typical mountain ridgeline construction 
 

Figure 6 shows a view of a post-construction view for arctic conditions, which shows 
the pipeline positioned on offsets above the ground. This practice helps to manage the 
thermal profile of the pipeline, which helps to limit the ecological impact and structural 
implications associated with permafrost. As needed, such offsets rise above the grade to 
facilitate unimpeded migration of reindeer or other species as might be needed. 
Successful passage through geographic barriers as shown in these views using modern 
practices is improbable given the practices of the 1960s and earlier.  
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Figure 6. Typical arctic aboveground construction 
While the early, thick compliant bitumen/tar-based, over-the-ditch pipeline coatings 
were well suited to protecting pipelines from construction-related damage and 
corrosion, such coatings were prone to “dry-out” due to the effects of aging and 
temperature on their volatile constituents. Because coatings were not used in the earliest 
construction, “bare” pipe was eventually protected against corrosion by use of cathodic 
protection (CP). And, as the early coatings dried out and became less functional, CP 
was added to those systems to protect against corrosion. Recognizing the problems with 
early coatings, alternative more reliable coatings evolved. Modern mill-applied fusion-
bonded epoxy coatings coupled with field-applied epoxy or urethane coatings or mill 
and/or field-applied primer plus multi-layer tape coatings have evolved. These modern 
coating systems reduce the time on the construction spread at the same time they 
improve the metal-loss protection and reduce the demand on the CP system – all 
substantial benefits as compared to the early schemes.  
 
3. Hydrocarbon Pipeline Infrastructure and Its Importance 
 
As market demand grows, the pipeline infrastructure develops to meet the needs whose 
scope depends on the demand, the proximity of demand to supply centers, domestic 
versus imported supply, and the history of that demand. Where demand is broad, the 
infrastructure evolved can be extensive, showing evidence of supply points, which 
appear as hubs for the pipeline network. Where domestic supplies exists, those hubs fall 
within the boundaries of the country, whereas when the demand is met by imports those 
hubs show cross-border interconnects, or the hubs lie near the coast, or major rivers, 
where facilities to offload ships develop.  
 
Perhaps the most comprehensive pipeline network in the world has developed in the 
US, driven in part by the observation that this is also the oldest network,  with a number 
of interconnects into Canada who supplies a range of hydrocarbon products.  
Figure 7 illustrates the natural gas transmission network in the US, where historical as 
well as current supply sources are quite evident. The interstate natural gas transmission 
network represented in this figure as dark lines comprises almost 500 000 km. The 
crude oil transmission and gathering pipelines in the US comprises about 120 000 km, 
with another roughly 130 000 km in hazardous liquid transmission service. Less 
extensive networks have developed in Mexico, which also has interconnects into the 
US.  
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Figure 7. Gas transmission pipeline network (US) 
Large although less dense pipeline networks are developing in parts of Europe and Asia, 
as is apparent in Figure 8, which for the scale used represents roughly one third the land 
mass shown in Figure 8 for the US. With the change in scales between Figures 7 and 8 
accounted for it is clear that the US network is much more extensive and concentrated 
around supply basins as compared to that of Europe, and its interconnections east and 
south.  

 

 
 

Figure 8. Transmission pipeline network (~Europe) 
 

The networks in many other countries and continents are equally modest as compared to 
the US or even as compared to Europe, whereas for other developing areas such 
networks are just beginning to evolve. As Figures 7 and 8 imply, transmission pipelines 
are used to move natural gas as well as crude and refined petroleum products. Pipelines 
are used to transport water and other commodities, but such topics are beyond the 
present scope.  
 
For countries where an extensive network of hydrocarbon transmission pipelines has 
developed, the fuels and other products they transport are essential to the local quality 
of life. The AOPL indicates that interstate pipelines in the US deliver over 12.9 billion 
barrels of petroleum each year. At 42 gallons per barrel this is a significant amount, 
comprising about two-thirds of the oil shipped in the US. Of this, roughly 7.6 billion 
barrels is crude oil, with the remaining 5.3 billion barrels being refined petroleum 
products. For nations that have extensive pipeline networks in many ways their 
economic health depends on the enormous quantities of oil moved each day. For 
example, in the US about 97-percent of energy consumed in transportation is supplied 
by petroleum. Petroleum derived fuels – for example gasoline for cars, diesel for trucks 
and locomotives, and other fuels for ships and airplanes – all are refined from crude oil, 
which is moved first by pipelines as crude oil for refining, and then again is transported 
by pipelines to distribution centers.  
 
While pipelines employ a relatively small number of people, the fuel delivered by 
pipelines directly underlies a significant number of jobs. More than one-tenth of the 
American workforce is employed in transportation and related industries. These 
industries employ truck drivers, warehouse and shipping labor, pilots, bus drivers and so 
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on, all of whom run their vehicles with pipeline-supplied fuels. The US defense services 
is another major employment sector that relies on pipelines. The defense services buy 
more refined oil products than any other single buyer in the world – about $3.6 billion 
for fuel every year, much of which is delivered by pipeline. The AOPL indicates that 
more than 100 defense services installations in the US have direct connections to the 
interstate pipeline network to meet their needs for petroleum supplies. It follows that the 
network shown in Figure 7 plays a critical role in the lives of many Americans, and that 
a significant percentage of the economic benefits from the nation’s industrial sector rely 
on petroleum-based raw materials made possible by the oil pipeline industry. 
Hydrocarbon pipelines also play an essential role in the public sector, providing fuels to 
heat and/or cool the nation’s homes.  
 
- 
- 
- 
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