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Summary 
 
Moving surfaces in various machines exposed to external loading are subjected to cyclic 
normal and frictional stresses which cause fatigue damage and limit their useful life. In 
addition to that, due to various technological operations including tempering and 
finishing operations (such as grinding, honing, polishing etc.) machine parts acquire 
some residual stresses. In properly treated and finished machine parts these residual 
stresses are usually relatively high compressive near surfaces and low tensile at 
subsurface part locations. In most cases these joints are lubricated one way or another. 
Therefore, it is important to understand the possible interaction of lubricant with solid 
containing cracks. There are a number of damage mechanisms caused by cyclic stresses 
such as pitting, wear, abrasive wear, delamination, scuffing, etc. Usually all these 
mechanisms of damage take place simultaneously and compete with each other. Due to 
the fact that each of these mechanisms has its own scale and origination depth in 
material different contact parameters affect these damage mechanisms differently. For 
example, surface roughness and other near surface material parameters have the most 
effect on delamination and wear and the scale of the damage is relatively small. On the 
other hand, pitting is usually a subsurface originated phenomenon unless there are 
significant surface defects which may change its origin. This essay treats some aspects 
of fracture mechanics based modeling of contact fatigue, i.e. pitting. First, a theoretical 
analysis of subsurface and surface cracks behavior is proposed. Under certain conditions 
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it is possible to apply perturbation methods and obtain relatively simple analytical 
expressions for the stress intensity factors at the crack tips. That provides the basis for 
fatigue modeling. The essay establishes the essential modules/elements of such 
modeling and provides the analysis of the resulting relationships of fatigue life versus 
applied normal and frictional contact stresses as well as residual stress. The analysis of 
fatigue life on the initial material defectiveness is also provided. 
 
1. Introduction 
 
Cyclic loading is a typical regime of operations various machine elements are subjected 
to. There are a number of processes associated with cyclic loading which limit the 
useful life of machine parts. Among them there are a number of surface related damage 
mechanisms such as pitting, fatigue and abrasive wear, corrosion, pealing, scuffing, etc. 
Each of these damage mechanisms has its own scale and depth of penetration. The 
damage mechanism with the largest scale is pitting which is caused by material 
accumulated fatigue. The scale of wear, corrosion, pealing etc. is usually significantly 
smaller. This essay is concerned with analyzing and modeling of pitting mechanism of 
fatigue failure.  
 
Historically, the first approach to fatigue is based on SN curves which represent the 
inverse relationship between fatigue life N (measured in number of loading cycles) and 
some positive power of the applied stress .S Due to the complexity of fatigue 
phenomena fatigue modeling of construction (structural) fatigue and contact fatigue 
were considered as separate phenomena and developed differently. Even in contact 
fatigue, modeling of pitting in bearings and gears is historically done differently. It was 
understood that pitting is a very complex phenomenon and it is affected by various 
operational and material parameters. Among these parameters are the applied load and 
lubrication, material elastic and fatigue properties, initial material defectiveness and 
surface properties, material crystalline structure and residual stresses. It is very hard to 
keep track of all these parameters experimentally and, at the same time, it is possible 
model the effect of many of these parameters analytically. Therefore, it is important to 
determine which parameters are affecting pitting/contact fatigue the most. To do that a 
review of some existing experimentally and numerically obtained data will be 
conducted which will reveal these most important for contact fatigue parameters. That 
will allow to review some of the well known models of contact fatigue and their ability 
to adequately take into account the established most important for contact fatigue 
parameters. After that a contact fatigue will be developed to include these parameters as 
its essential part. 
 
Any pitting phenomenon culminates in a surface spall which is cased by fatigue crack 
propagation. Therefore, the question is how long does it take for the crack(s) leading to 
a spall to propagate and to be initiated. Assuming that crack propagation stage in 
contact fatigue is important it is necessary to know whether fatigue cracks coalescence 
or propagate alone, what is the direction and rate of fatigue crack propagation and 
which parameters affect them. The answers to these questions lie in the analysis of the 
available experimental and numerical data. It will be shown that it is reasonable to 
assume that the crack initiation period is much shorter than the crack propagation stage. 
Therefore, with low error it can be assumed that the useful fatigue life of a machine 
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element is practically completely controlled by the crack propagation stage. That creates 
the necessity to characterize stress intensity concentrations in the vicinity of cracks. 
Also, it will be shown that for the most of their lives fatigue cracks are located far away 
from each other and practically do not feel the presence of the neighboring cracks. 
Taking into account the fact that for properly designed and operated machine elements 
the location of contact fatigue origination is usually relatively far away from the contact 
surface and from other cracks allows for simple analytical solution of complex 
equations controlling stress intensity factors at the tips of fatigue cracks. That by itself 
opens a great opportunity to easily model the fatigue behavior of machine elements 
subjected to cyclic loading which is done in two- and three-dimensional cases. 
 
In addition to that the interaction of lubricant usually present at the joint surfaces with 
surface cracks is considered. The comparison of the stress intensity factors for surface 
and subsurface cracks allows to understand the difference between fatigue lives of 
drivers and follows as well as the location of contact fatigue origination: surface or 
subsurface. 
 
2. Review of Experimental and Numerical Contact Fatigue Data, Identification of 
the Parameters Most Strongly Affecting Fatigue. Review of Some Existing Contact 
Fatigue Models 
 
To make an objective conclusion on which parameters are affecting contact fatigue the 
most there is a need to analyze the response of contact fatigue to variations in external 
and residual stresses, the effect of material cleanliness, lubricant nature and its 
contamination, surface topography, material structure, elastic and fatigue properties, and 
the relationship between the durations of the crack initiation and propagation stages.  
 
2.1. Crack Initiation versus Crack Propagation 
 
In most cases researchers categorize crack initiation period as the period during which 
fatigue cracks are smaller than a certain small size. Often fatigue cracks are initiated 
somewhere beneath the surface and cannot be observed until they grow to the surface. 
The latter and the fact that the value of this small crack size is very subjective make the 
definition of the crack initiation period itself also subjective which creates some 
ambiguity. Nonetheless, in some experimental studies researchers were able to register 
and somehow distinguish between the periods when fatigue cracks are small and the rest 
of crack lives until a pit is formed. In the experimental study of Clarke et al. (Clarke et 
al., 1985) it has been observed that microcracks which eventually produce micropits are 
present as early as 5% of the sample fatigue life. In studies of ceramics Kapelski et al. 
(Kapelski et al., 1988) observed that microcraking occurs in the very beginning of 
cyclic loading. Nisitani and Goto (Nisitani and Goto, 1984), Tanaka et al. (Tanaka et al., 
1984), and Wu and Yang (Wu and Yang, 1987) experimentally determined that the 
crack initiation period is much shorter than the crack propagation period. That can be 
clearly seen in Figures 1 and 2. The data in Figures 1 and 2 show that the crack 
propagation period represents at least 80%-90% of contact fatigue life. Shao et al. (Shao 
et al., 1988) reported that the subsurface crack growth period lasted 89% of the contact 
life.  
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Figure 1. Distributions of lives for crack initiation and for final failure (after Tanaka et 
al. (Tanaka et al., 1984)). Reprinted with permission from the JSME. 

 
Figure 2. Cumulative probability of failure versus number of load cycles (after Ishikawa 

(Ishikawa, 1984)). Reprinted with permission of JSME. 
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2.2. Material Microstructure versus Contact Fatigue 
 
A number of researchers Drul’ et al. (Drul’ et al., 1987), Rodriguez and Sevillano 
(Rodriguez and Sevillano, 1984), Schaper and Bosel (Schaper and Bosel, 1985) 
indicated that the austenite grain size either does not affect fatigue life or the increase of 
austenite grain size leads to slow increase in fatigue life. There was not observed any 
appreciable change in crack propagation direction due to austenite grain boundaries 
(Kunio et al., 1982). There is practically no knowledge on how doping elements affect 
contact fatigue. 
 
2.3. Normal, Frictional, and Residual Stresses versus Contact Fatigue  
 
It is well known that as the normal load/stress increases contact fatigue life decreases. It 
is not that well known that the other two stresses, i.e. the frictional stress applied to the 
contact and the residual stress occurring below surface also have a significant impact on 
fatigue life. The appreciable influence of traction on contact fatigue has been 
demonstrated in (Soda and Yamamoto, 1981). Another clear indication of the strong 
relationship between the frictional stress and contact fatigue was demonstrated in 
experiments of Pinegin et al. (Pinegin et al., 1972) and Orlov et al. (Orlov et al., 1980). 
Most researchers (Mattson, 1961; Serensen, 1952; Scott et al., 1962; Almen and Black, 
1963; Averbach et al., 1985; Voskamp, 1985; Sveshnikov, 1964) agree that tensile 
residual stresses and conducive to developing contact fatigue while compressive 
residual stresses retard fatigue failure. However, the increase of the compressive 
residual stress beyond a certain level does not produce any additional positive effect on 
contact fatigue life (Kepple and Mattson, 1970). The experimentally obtained data by 
Averbach et al. (Averbach et al., 1985) indicate that the rate of fatigue crack growth 
and, therefore, fatigue life are related not to material hardness but to the residual stress 
distribution versus depth below the surface.  
 
2.4. Material Defects versus Contact Fatigue 
 
Most researchers observed experimentally fatigue crack initiation in the vicinity of a 
material defect such as a nonmetallic inclusion (Murakami et al., 1989; Nishioka, 1951; 
Yokobori, 1961; Watanabe, 1962). Moreover, it has been concluded that nonmetallic 
inclusions have a strong influence of contact fatigue life (Murakami et al., 1989). That 
was clearly explained by the study of Brooksbank and Andrews (Brooksbank and 
Andrews, 1972) (see Figure 3) based on the difference between the values of the 
temperature expansion coefficient of an inclusion and the steel matrix. A number of 
experimental sources indicate that oxides and alumina inclusions are the most 
detrimental for contact fatigue while sulfides are harmless (Kinoshi and Koyanagi, 
1975). It was determined directly from bearing testing and usage of nondestructive 
ultrasonic method of measuring of steel cleanliness (Stover and Kolarik, 1987) that 
there is an inverse power relationship between bearing contact fatigue life and the 
measured oxide stringer length where stringers are represented by clusters of individual 
oxide particles (see Figure 4). It can be shown that the replacement of these stringers by 
single cracks of the same size introduces just a small error in the stress field caused by 
the stringers. 
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Figure 3. Stress-raising properties of inclusions in 1% C-Cr bearing steel (after 

Brooksbank and Andrews, 1972). Reprinted with permission from the Elsevier Science 
Publishing. 

 

 
Figure 4. Bearing life-inclusion length correlation (after Stover and Kolarik II (Stover 

and Kolarik, 1987), Copyright The Timken Company 2009). 
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Bokman et al. (Bokman et al., 1986) and Bokman and Pershtein (Bokman and 
Pershtein, 1984) experimentally studying aluminum alloys concluded that the 
nonmetallic inclusion and crack size distributions are close to a lognormal probabilistic 
distribution. 
 
Experimental studies of fatigue crack propagation showed that at its initiation at an 
inclusion surface or in its closest proximity crack propagation may initially be driven by 
shear stresses. However, soon after initiation these cracks turn and propagate 
perpendicular to the maximum of the local tensile stress (Wu and Yang, 1987; Kapelski 
et al., 1988; Kitagawa et al., 1981). A typical fatigue crack orientation near nonmetallic 
inclusions is shown in electron micrographs in Figure 5. It is clear from Figure 5 that all 
cracks initiated in the vicinity of an inclusion eventually become practically 
perpendicular to tensile stresses the direction of which indicated in the photographs by 
arrows. 

 
Figure 5. Scanning electron micrographs showing: (a) and (b) nucleation and growth of 
microcracks at points of maximum stress concentration on boundary of hole formed at 
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damaged alumina inclusions, 64 10× cycles ( 3000× ) and 64.3 10× cycles ( 3200× ), 
respectively; (c) fatigue crack nucleation away from inclusion sites at 64.5 10× cycles 
( 1600× ); (d) and (e) propagation of microcracks from alumina nucleated holes and 
subsequent linking to form macrocracks, 64.7 10× cycles ( 1650× ) and 65 10× cycles 

( 790× ), respectively; (f) surface of specimen, having failed at 65.5 10× cycles, with no 
evidence of crack nucleation due to the highly elongated manganese sulfide inclusions 
( 3300× ). Arrows indicate direction of cyclic bending stress (after Eid and Thomason 

(Eid and Thomason, 1979)). Reprinted with permission from the Elsevier Science 
Publishing. 

- 
- 
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