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Summary 

 

At the time when we begin writing this chapter, Arctic summer ice is experiencing the 

lowest areal coverage since the beginning of the satellite record. The depletion of sea 

ice has far exceeded any model predictions. The reduction of sea ice presents unknown 

environmental threats even without further human activities in the region. Yet 

accelerated human activities are inevitable under the pressure for resource development. 

Among which, the northern routes have already opened for shipping between the 

Atlantic and the Pacific Ocean. To better manage the Arctic Ocean, synthesis of 

knowledge is required to prepare predictive tools for evaluating future evolution of this 

region.  

 

One of the most obvious changes in the warming of the Arctic is the increased open 

water, especially in the summer. Wind over open water generates waves. The greater the 

distance that wind can travel, the longer and more intense the wave becomes. In the 

past, global wave models ignored the Arctic Ocean completely, due to the lack of open 

water. Now, both the reality of its presence and our need to know its consequence can 

no longer allow the absence of reliable wave information in this region. Furthermore, as 

a material, ice is not a rigid cover. It can be manipulated mechanically by the wave 

action to fracture and raft. The formation of ice cover from supercooled water is also 

quite different in a wave field than in a quiescent water body. Wave and ice are truly 

interactive entities.  

 

There is a large body of information concerning the theoretical development of waves 

under ice covers, particularly in the recent couple of decades. Comparatively, field, 
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remote sensing, and laboratory studies of this topic are few. On the other hand, the 

effect of waves on forming and reforming the ice cover is a much less studied topic. In 

this chapter we will review the most basic theories of waves under ice covers to provide 

a foundation for those who desire to explore the recent developments. A number of 

direct observations from field, remote sensing, and laboratory studies of waves under an 

ice cover will be discussed. The effect of waves on ice is introduced in the second half 

of the chapter. Some perspectives of this field are given at the end in the Conclusions. 

 

While this chapter covers aspects of wave and ice interactions, there is another chapter 

in this EOLSS collection under the Oceanography Theme which covers more broadly 

many other issues on sea and ice interactions (Weber, 2008).  

 

1. Introduction  

 

Ocean waves are fascinating. They appear to be perpetual, random, forever changing. 

But, they are also one of the most fundamental types of mathematical problems. In fact, 

after removing the nonlinear effects which are often small in most practical cases, 

mathematically waves are surprisingly simple, elegant and entirely predictable. These 

predictions from the linearized theory replicate observations with impressive accuracy. 

Stoker (1957) is an excellent reference of this subject. A schematic of a wave field 

consisting a moving water body and the atmosphere is depicted in Figure 1. The water 

flow is assumed incompressible and irrotational. The fluid viscosity is ignored. The 

governing equation of ocean waves is the Laplace equation 

 

 
 

Figure 1. Schematic of a wave field. 

 
2 0   (1) 

 

where  is the velocity potential such that the water particles under the wave motion is 

described by 
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The coordinate system has the z  axis opposite to gravity. The surface profile  , ,x y t  

is related to the velocity potential through the physical constraint that the water velocity 

in the vertical direction must be the same as the velocity of the surface profile, 
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The above is called the “kinematic” surface boundary condition which means the water 

particle on the wave surface moves up and down with the surface profile. The 

“dynamic” surface boundary condition comes from the pressure balance at the air-water 

interface, i.e. the Bernoulli equation 
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where    is the water pressure at the surface,   is the water density. At a horizontal 

sea bed the vertical velocity must vanish to satisfy the rigid impervious boundary 

condition, 
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 (5) 

 

In general, due to the nonlinearity in the boundary conditions at the free surface, the 

above system of equations cannot be solved analytically. Linear wave theory is thus 

developed under the assumption that the ratio of wave amplitude to wavelength is 

infinitesimal, hence all nonlinear terms may be dropped. Under this assumption (3) 

becomes 
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and (4) becomes 
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in which the atmosphere pressure is taken as zero. Assuming a sinusoidal solution in 

time, the Laplace equation is solved using the standard separation of variables 

technique, which gives the elemental solutions in terms of the wave number k  and 

angular frequency   
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In which x  is defined as the direction of a propagating planar wave, hence the variation 

in the y  direction vanishes. Applying the sea floor condition (5), C  and D  are related 

to combine into 
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The dynamic free surface boundary condition (4) serves to relate the wave amplitude A  

defined by the surface profile  

 
 i kx t

Ae
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


  (10) 

 

and the coefficient in the velocity potential 
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  (11) 

 

Finally, the linearized kinematic free surface boundary condition (3) provides the 

dispersion relation between the wave frequency   and the wave number k  

 
2 tanhgk kH   (12) 

 

Thus the wavelength 2L k  and the wave period 2T    are directly related. The 

“group velocity”, i.e. the speed of wave energy propagation can be obtained by 

calculating gc
k





. The phase velocity (or celerity) defined as c L T k   is the 

apparent speed of the wave crest (or trough). In general, gc c  and only when water 

depth approaches 0 these two speeds approach each other. 

 

For water of depth greater than half the wavelength, one may approximate the 

dispersion relation so that  
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Another useful information is the dynamic pressure inside the water body. Because the 

fluid is assumed irrotational and inviscid, (4) is valid everywhere. Dropping the 

nonlinear terms in (4) we obtain the total pressure at any depth z  as 
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The second term on the right is called the “dynamic pressure”. It asymptotically 

approaches zero towards the bottom of the sea.  

 

In the field, ocean waves are a combination of many such components which form a 

continuous spectrum. The energy of each band of component may change due to local 

wind stress, due to nonlinear interactions between different bands of waves, and due to 

dissipations such as interactions with the boundaries. Many of these detailed processes 

for open water waves are still under investigation. The main problem is to expand the 

theory so that nonlinearities can be dealt with, since most of the practical problems are 

related to these nonlinear terms. 
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2. Ice Covers in the Marginal Ice Zone and Basic Models 

 

Before describing how to include an ice cover in the wave theory, we first survey how 

varied an ice cover can be. Figure 2 shows an example of the entire Arctic as viewed 

from space. It is difficult to detect any details at this distance, but it is already apparent 

that the surface texture is significantly heterogeneous. A close-up view of the sea ice 

may be obtained from ships, helicopters, or airplanes. Figure 3 shows a collection of 

some of these observations. The composition of sea ice covers differs both temporally 

and spatially.  

 

 
 

Figure 2. An image of the Arctic ocean taken on May 25, 2009 by the MODIS sensor on 

the NASA Terra Satellite. (Image/photo courtesy of the National Snow and Ice Data 

Center, University of Colorado, Boulder.) 
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Figure 3a. New pancake ice a wave field. Photo taken some time in the 1980s near 63
o
s 

55
o
e in the Southern ocean. (Courtesy of the Australian Antarctic Division.) 

 

 
 

Figure 3b. Arctic sea ice from a 2012 Operation IceBridge aerial survey. Varying 

thicknesses of sea ice are shown here, from thin, nearly transparent layers to thicker, 

older sea ice covered with snow. (Courtesy of the National Snow and Ice Data Center, 

Credit: NASA.) 

http://nsidc.org/data/icebridge/index.html
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Figure 3c. A broken ice sheet. Photo taken in 2003 during the ARISE Program from 

Aurora Australis  (Courtesy of the National Snow and Ice Data Center, Credit: Rachel 

Marsh.) 

 

 
 

Figure 3d. Aged broken ice field. Photo taken in 2012 in the Southern Ocean. (Credit: 

Steve Ackley.) or use A photo of ice floes interspersed with pancake ice. From Healy in 

the Greenland Sea on a trans-Arctic voyage. (Credit: Don Perovich.) 

 

When newly formed in a quiescent environment, such as in narrow leads from cracked 

up large ice sheets, the ice cover is smooth. This type of ice is rare in the ocean. Near 

the ice edge waves agitate the water surface, where a different process called the 

“pancake ice cycle” takes place (Lange et al., 1989). Ice crystals that form at the air-

water interface agglomerate first into a soupy consistency called “grease ice”. The 

accumulation of grease ice eventually freezes into pancake ice which continues to grow 

in size until waves attenuate sufficiently so that a continuously frozen ice sheet may 

form. Grease ice obtained its name from the fact that this slurry sheet damps out high 
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frequency waves, renders the surface a smooth appearance similar to a layer of grease 

on top of water. Pancake ice is named after its resemblance of pancakes. This type of ice 

is formed after sufficient accumulation of grease ice forces the top layer into air much 

colder than the water below. The exposed surface freezes. Under the wave agitation the 

freezing process is limited by the internal stresses that exceed the frozen bonds (Shen et 

al., 2004). The wave induced collisions among neighboring ice floes erode the rough 

corners of the floes to form the strikingly circular shape with nearly uniform size. As the 

wave energy damps out by the existing pancake ice field, these circular floes freeze 

together. The formed ice sheet keeps growing through both thermodynamic and 

mechanical transformations that change its physical composition: thermal growth from 

frozen water underneath, melting and refreezing snow from above, sea water flooding 

and freezing on top, fracturing due to wave bending, and rafting and ridging due to the 

external stress field. These processes change the physical properties of an ice cover 

throughout its entire lifecycle. The mechanical property of an ice cover depends on its 

physical composition as well as the temperature and salinity. For the same ice cover, in 

general, the colder it is the more rigid it is. This rigidity also increases with reduced 

salinity. Hence young sea ice covers are less rigid than the multi-year ice covers. A 

valuable resource for viewing different types of sea ice covers is the CD-ROM 

produced by Worby (1999). 

 

- 

- 

- 
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