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Summary 

 

This chapter describes recent progress made by a team from the NOAA Great Lakes 

Environmental Research Laboratory (GLERL) and the University of Michigan (UMich) 

Cooperative Institute for Limnology and Ecosystems Research (CILER). Over the past 



UNESCO-E
OLS

S

SAMPLE
 C

HAPTERS

COLD REGION SCIENCE AND MARINE TECHNOLOGY - Great Lakes Ice And Climate: From Research To Forecast -  Jia 
Wang, Xuezhi Bai, Haoguo Hu, Ayumi Fujisaki Manome, Dmitry Beletsky, Raymond Assel, George Leshkevich, Anne Clites, 

Gregory Lang, Eric Anderson, Nathan Hawley, Brent Lofgren, Steve Ruberg, David Schwab, Boqiang Qin, Lin Luo 

Encyclopedia of Life Support Systems (EOLSS) 

six years (from 2007-2012), this team has studied Great Lakes ice and regional climate 

in response to global climate changes and how to transfer scientific research results into 

predictions of lake ice on the scales of several days to several months. The Great Lakes 

are located at the edge of the action centers of the North Atlantic Oscillation (NAO) and 

the nodal points of the action centers of the Pacific-North America (PNA) pattern. 

Aloft, there exists a strong highly-fluctuating annual south-north displacement of the 

westerly jet. Great Lakes ice responds linearly to the NAO and nonlinearly 

(quadratically) to the El Niño and South Oscillation (ENSO or Nino3.4). As a result, 

both NAO and ENSO have impacts on lake ice, but neither of them solely dominates the 

Great Lakes regional climate and lake ice cover. The combined effects of both NAO 

and ENSO on lake ice provide high predictability skills using statistical regression 

models. For the first time, fully-coupled Great Lakes Ice-circulation Models (GLIM) 

with both dynamics and thermodynamics have been developed at GLERL/CILER to 

simulate and investigate the lake ice variations on the synoptic, seasonal, interannual, 

and decadal time scales. The hindcast results were validated using in situ, airborne, and 

satellite measurements for various periods. The validated GLIM has been used since the 

2010-2011 ice season to forecast Great Lakes ice cover concentration, thickness, 

velocity, and associated air-ice-sea variables for up to five days in advance. 

 

1. Introduction 

 

The Laurentian Great Lakes, located in the mid-latitude of eastern North America, 

contain about 95% of the U.S. and 20% of the world’s fresh surface water supply. 

Nearly one eighth of the population of the United States and one third of the population 

of Canada live within their drainage basins. The Great Lakes can be considered a mini 

climate system, even though small compared to the global climate system or Arctic 

regional climate system, since all five important climate components are included 

(Figure 1): regional atmosphere and climate, hydrosphere (hydrodynamics), cryosphere 

(lake ice), biosphere (aquatic ecosystem and terrestrial ecosystem), and land process 

(hydrology). In addition, the human dimension is another important component 

affecting the Great Lakes climate system. In this mini-climate system, there are strong 

interactions and associations among the components. Because of this concentration of 

population (human dimension), the ice cover that forms on the Great Lakes each winter 

and its year-to-year variability affect the regional economy (Niim, 1982). It also affects 

the lake’s abiotic environment and ecosystems (Vanderploeg et al. 1992) in addition to 

influencing summer hypoxia, lake effect snow, water level variability, and the overall 

hydrologic cycle of the region (Assel et al. 2004b).  

 

From the late 1990s to the early 2000s, the volume of lake ice cover was much lower 

than normal, which enhanced evaporation and might have contributed to a significant 

water level drop (Spence et al. 2013), as much as 1.3 meters. Lower water levels have a 

significant impact on the Great Lakes economy. For example, more than 200 million 

tons of cargo are shipped every year through the Great Lakes. Since 1998—when water 

levels took a severe drop—commercial ships have been forced to lighten their loads. For 

every inch of clearance that these ocean-going vessels sacrificed due to low water 

levels, each ship lost US$11,000–22,000 per day in profits. Lake ice loss can cause 

other problems, including the destruction of the eggs of fall-spawning fish by winter 

wave and storm stirring or mixing and erosion of coastal areas unprotected by shore ice 
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(Brown et al. 1993). Ice loss also compromises the safety of people engaging in winter 

recreational activities such as snowmobiling or ice fishing.  

 

 
 

Figure 1. The Great Lakes mini-climate system involving all five climate components: 

the regional climate/atmosphere, cryosphere, hydrosphere (hydrodynamics), aquatic 

ecosystem, and land processes, which are highly interrelated. 

 

The presence (or absence) of ice cover on lakes during the winter months is also known 

to have significant effects on both regional climate and weather events (such as thermal 

moderation and lake effect snow) (Brown and Duguay 2010). Lake ice cover is a 

sensitive indicator of regional climate and climate change (Smith 1991; Hanson et al. 

1992; Assel and Robertson 1995; Assel et al. 2003). Seasonal ice cover repeats from 

year to year but has a large interannual variability (Assel 2003). For example, the 

maximum ice coverage was 95% in 1979 and only 11% in 2002. The relationship 

between air temperature and ice phenology is well established (Assel 1976; Bilello 

1980; Palecki and Barry 1986; Williams 1965) whereby the preceding air temperature, 

for weeks to months depending on the location, can be used as a predictor of freeze-

up/break-up. For the Northern Hemisphere from 1846 to 1995, Magnuson et al. (2000) 

estimated that an increase in air temperature of 1.2 °C would have been necessary to 

result in the shift of freeze-up and break-up dates (5.7 days/100 years later and 6.3 

days/100 years earlier, respectively) (Brown and Duguay 2010). In the Northern 

Hemisphere, freeze-up in northern areas (e.g., Lake Kallavesi, Finland) reflects the 

climate conditions around October and November, while freeze-up in areas further 

south (e.g., Grand Traverse Bay, Lake Michigan) reflects the climate from January to 

February (Magnuson et al. 2000).  
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Lake ice cover can modify the lake circulation patterns and thermal structure because: 

1) momentum transfer into the water column from wind stress drag is considerably 

greater over the water surface than over the water surface beneath the ice cover 

(Fujisaaki et al. 2013); 2) the albedo over ice vs. water differs, and 3) heat and moisture 

exchange between the atmosphere and the lake water can differ significantly (as much 

as orders of magnitude different) with and without lake ice (Walter et al. 2006), thus 

leading to striking differences in evaporation in wintertime due to strong cooling and 

wind mixing. Thus, prediction of the lake ice extent (i.e., ice cover) is crucial for 

predicting lake circulation, temperature and lake water level, and thus for predicting 

primary and secondary productivity. In addition, the timing of ice melt, determined by 

surface air temperature (SAT) that is controlled by climate variability, will determine 

the timing of spring phytoplankton and zooplankton blooms (Vanderploeg et al. 1992). 

As a result, lake ice cover, although relatively thin, is an important physical parameter 

for other ice-associated systems such as ecosystems and habitats for fisheries. This is in 

part because lake ice dynamics and thermodynamics significantly modify the water 

temperature, heat flux, mixing intensity, and water column stratification, which are 

important factors controlling phytoplankton blooms. 

 

Ice cover is an effective insulator to surface heat flux exchange between the atmosphere 

and the water, which affects water temperature. The Great Lakes are usually at least 

partially covered with ice from December to April. Initially, ice begins to form in 

shallow bays, and then gradually grows offshore. On the Great Lakes, maximum ice 

extent is normally observed in late February to early March, when ice typically covers 

from 24% of Lake Ontario to 90% of Lake Erie (Assel et al. 1983). Naturally-formed 

ice thickness can vary from a few centimeters to a meter or more (Rondy 1976). Brash 

ice, deformed by wind and waves, can reach several meters. Ice decay and breakup 

usually begin in March as solar radiation increases, and the thinner ice can then be more 

easily broken up by the action of wind and waves. Recent observations of sensible and 

latent heat fluxes over Lake Erie (Gerbush et al. 2008) show a rapid decrease in flux 

magnitude as ice concentration approaches 100%. 

 

The presence of ice cover also affects momentum transfer between the atmosphere and 

the water column, which determines waves and circulation patterns in a large lake. 

Momentum transfer is generally reduced by the presence of ice. Measurements of ice 

movement in Lake Erie using drifting buoys in winter 1984 show that wind is the major 

forcing to ice transport in the Great Lakes (Campbell et al. 1987). In particular, they 

reported that the mean observed speed of the buoys in ice is about 8 cm/s, half the mean 

speed observed in open water.  

 

Studies showed that teleconnection patterns such as the Pacific/North America (PNA; 

Wallace and Guztler 1981) (Figure 2a), North Atlantic Oscillation (NAO) (Figure 2), 

Pacific Decadal Oscillation (PDO), and West Pacific (WP), are associated with 

anomalous ice cover on the Great Lakes (Assel and Rodionov 1998; Rodionov and 

Assel 2000, 2001, 2003; Rodionov et al. 2001 ) and other small lakes in North America 

(Anderson et al. 1996; Robertson et al. 2000; Bonsal et al. 2006; Mishra et al. 2011). 

Assel and Rodionov (1998) pointed out that ice cover on the Great Lakes tends to be 

below average during strong El Niño events, but association between La Niña events 

and above-average ice cover in the Great Lakes basin is much weaker and less stable. 
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Rodionov and Assel (2000, 2001, 2003), and Rodionov et al. (2001) found that the 

relationship between ENSO (El Niño and Southern Oscillation) and severity of winters 

in the Great Lakes is highly nonlinear. Strong El Niño events are associated with 

warmer temperatures in the Great Lakes region. The stronger the event, the milder the 

winter. Ice-off dates for Lake Mendota, Wisconsin, have been associated with El Niño 

events (Anderson et al. 1996; Robertson et al. 2000). The observed changes in Canada’s 

lake ice cover have also been influenced by large-scale atmospheric teleconnections 

(Bonsal et al. 2006). Ice phenology was shown to be more responsive to the extreme 

phases of the teleconnections, with the Pacific indices (PNA, PDO, SOI, and NP) 

having the strongest correlation to ice cover, with the exception of the extreme eastern 

areas, which were more affected by NAO (Bonsal et al. 2006). A recent study (Mishra 

et al. 2011) also shows that lake ice phenology of small lakes around the Great Lakes 

region is associated with these major climate teleconnection patterns, including NAO, 

AO (Arctic Oscillation), and AMO (Atlantic Multidecadal Oscillation).  

 

 
 

Figure 2. The positive phase of PNA (left) and NAO (right) patterns (interval: 1dam). 

The patterns were obtained by regressing the PNA and NAO index upon the winter 

mean 500-hPa geopotential height anomaly for the period 1951-2011. 

 

Before 2007, although there was some trials to develop numerical models of ice 

transport in the Great Lakes (Rumer et al. 1981) based on Hibler's (1979) dynamic-

thermodynamic sea-ice model. There existed no viable ice model for use as a research 

or as an operational forecast tool in the Great Lakes. However, there had been some 

successful efforts in coupled ice-ocean modeling in many subpolar seas and bays, such 

as in Hudson Bay (Wang et al., 1994; Saucier et al. 1998, 2004), in the Gulf of St. 

Lawrence (Saucier et al. 2003, 2004), in the Baltic Sea (Meier et al. 2002 a, b; Haapala 

2000; Haapala et al. 2001), and in the Labrador Sea (Yao et al. 2000). These areas are 

similar (except for salinity) to the Great Lakes because they do not have perennial ice 

cover.  

 

Ice-ocean coupled models have proven to be useful for understanding the ice-water 

coupling and predict the regional circulation system. Wang et al. (2010a) made a first 

attempt to develop the Great Lakes Ice-circulation Model (GLIM) and applied it to Lake 

Erie. They performed a hindcast from April 2003 to December 2004 with a spatial 

resolution of 2 km, reproducing the seasonal variation of ice cover as well as the water 

surface temperature. Recent studies have incorporated an ice model into Great Lakes 
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hydrodynamic models. Bennington et al. (2010) investigated the general circulation of 

Lake Superior from 1979 to 2006 using the MIT general ocean circulation model. Their 

model accounted for the presence of ice by modifying the surface fluxes of heat and 

momentum, as well as evaporation as a function of ice concentration in a cell, using an 

ice concentration analysis. White et al. (2012) applied a Regional Oceanic Modeling 

System (ROMS) that includes a dynamic and thermodynamic ice model and a 

biochemical model to Lake Superior, successfully reproducing the observed long-term 

warming of lake surface temperature. They showed that the annual gross primary 

production correlated positively with mean annual temperature and negatively with 

mean winter ice cover. The most recent modeling work that includes ice processes in 

the Great Lakes was performed based on NEMO (Nucleus for European Modelling of 

the Ocean) along with the model-derived atmospheric forcing and river inputs (Dupont 

et al. 2012). Their model reasonably well reproduced the variation of lake levels and ice 

concentrations, but the lake thermal structures and lake currents were not discussed. On 

the other hand, the influences of anomalous ice cover on lake circulation and thermal 

structure have not been known well. Recent studies by Fujisaki et al. (2012, 2013) 

showed that ice cover could significantly dampen the coastal flow in winter due to the 

ice-water stress coupling, based on a sensitivity study in 2003-2004 using the ice-lake 

model for Lake Erie. 

 

Based on the GLIM, the Great Lakes Coastal Forecasting System (GLCFS) predicts not 

only lake water circulation, temperature, and surface waves, but also lake ice cover 

concentration, thickness, velocity, and vessel icing 

(http://www.glerl.noaa.gov/res/glcfs/). Since it currently has a lake-ice component, 

empirical methods, which have been used for decades to keep the system running over 

winter, have been continued. Wave forecasts are also improved as ice cover dampens 

surface waves significantly during winter. Thus, significant progress has been made in 

ice-lake modeling and forecasting since the GLIM was developed in the Great Lakes. 

Increasing needs for predicting lake ice such as for navigation, weather forecasting, 

rescue efforts, and ecosystems studies are preliminarily met with the efforts of Great 

Lakes ice-circulation modeling. 

 

2. Seasonal Cycle of Great Lakes Ice Cover 

 

2.1. Seasonal Cycle 

 

The spatial long-term (1973-2002) mean annual maximum ice cover in the Great Lakes 

was constructed (Figure 3) using the updated ice dataset (Wang et al. 2012b). The 

seasonal ice cover cycle (Figs. 4-5) is computed based on the 1973-2011 data for the six 

lakes. The typical seasonal ice cycle of the Great Lakes consists of an initial formation 

(ice onset) period, followed by a growing period in which the annual maximum areal 

extent is reached, then a melting (break-up) period (Assel 2005). The typical ice cycle 

has an ice-on date on all lakes occurring in December. The growth of ice cover is 

remarkably similar in all of the Great Lakes. Figure 4 also shows the progression of 

maximum ice cover for each lake. 
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Figure 3. Long-term (1973-2002) mean annual maximum ice cover (in percentage) in 

the Great Lakes. Note that ice cover (or concentration) ranges from 0% (ice free) to 

100% (complete ice cover). (from Bai et al. 2011). 
 

 
 

Figure 4. The NIC twice-weekly climatology of ice cover (in percentage) in the Great 

Lakes averaged from the period 1973-2011. 
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