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Summary  
 
This contribution is devoted to two inter-related topics in the field of Structural 
Mechanics, namely, Structural Dynamics and Modal Analysis. It has been conceived 
aiming at providing the reader with the knowledge about the essentials of numerical and 
experimental techniques developed for characterizing the dynamic behavior of 
structural systems. In this context, “structural systems” broadly encompass a large range 
of engineered products such as civil engineering structures (buildings, towers, bridges, 
etc.), vehicles (airplanes, automobiles, trains, ships, spaceships, etc.), industrial 
equipment (pipes, off-shore platforms, electric power lines, etc.) and machines 
(compressors, turbines, internal combustion engines, etc.) and household appliances 
(refrigerators, washing machines, air-conditioners, etc.). 
 
Structural dynamics is the subject of continuously increasing interest in engineering, 
especially due to the fact that, in many applications, dynamic behavior is influential 
upon operational effectiveness, comfort and safety of the products mentioned above. It 
should not be forgotten that environmental and energy-related aspects, which have 
become subject of concern, are frequently in relation with structural dynamics 
 
Given the broadness of the topics addressed, this presentation is considered to be 
introductory. To learn about more advanced aspects, the reader should refer to a number 
of excellent text-books available, some of which are included in the bibliography list 
provided. 
 
This chapter comprises five sections, which are devoted to the following aspects of 
structural dynamics: Section 1: Introduction; Section 2: Vibrations of discrete systems; 
Section 3: Vibrations of continuous systems; Section 4: Finite element modeling in 
structural dynamics; Section 5: Introduction to experimental modal analysis. 
 
1. Introduction 
 
In the context of the present contribution, Structural Dynamics, is related to the study of 
the vibratory behavior of mechanical systems (machines, vehicles, industrial equipment 
and civil engineering structures, etc.) when subjected either to sustained or impulsive 
external forces, which are known as excitations. Vibrations are considered as 
oscillations about the equilibrium position of the system and result from a continuous 
exchange between kinetic and potential energy. Kinetic energy is related to the system’s 
mass or inertia, while the potential energy is associated to the system’s flexibility.  
 
Modal Analysis is understood as the ensemble of analytical and experimental 
techniques intended for the modeling of the dynamic behavior of vibrating systems that 
derive from the fact that, under certain conditions, the dynamic response can be 
represented as a superposition of the dynamic responses of elementary mechanical 
systems, in terms of the so-called modal characteristics. From the mathematical 
standpoint, modal analysis can be interpreted as a set of techniques intended for solving 
partial linear differential equations or systems of linear ordinary differential equations 
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by performing transformations from the physical coordinates to the so-called modal 
space. 
 
Modal analysis encompasses two main types of techniques, which will be addressed in 
the remainder of this chapter, namely: 
 
 Analytical modal analysis, which is primarily related to the modeling of the dynamic 
behavior in the modal space, making use of the modal characteristics. Hence, analytical 
modal analysis is intended to solve a class of direct problems; 
 
Experimental modal analysis, which consists in determining a set of modal 
characteristics of a given structural system from a set of measured responses. Thus, 
experimental modal analysis deals with inverse or identification problems. 
 
2. Theoretical Foundations of Structural Dynamics 
 
In the section, the theoretical foundations of structural dynamics and modal analysis are 
presented under the assumption of linear behavior. 
 
2.1. Equations of Motion for Discrete Systems 
 
We consider herein structural systems modeled as those depicted in Figures 1 and 2, 
which are assumed to exhibit linear behavior. This means that the resilient elements 
(springs) establish proportionality between displacements and restoring forces: 

ef kx= −  and the viscous dashpots (dampers) establish proportionality between 
velocities and damping forces: df cx= − . 
 

 
Figure 1. Examples of single d.o.f. and two d.o.f. undamped vibrating systems. 
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Figure 2. Example of a three d.o.f. damped vibrating system. 

 
 
From Newton’s Second Law or, alternatively, from the so-called Lagrange’s equations, 
it is possible to obtain the set of coupled second-order differential equations of motion 
that represent the dynamic behavior of a viscously damped N  d.o.f. mechanical system 
of, in the following matrix form: 
 
[ ] ( ){ } [ ] ( ){ } [ ] ( ){ } ( ){ }M x t C x t K x t f t+ + =  (2.1) 
 
where: 
 

( ){ }
( )

( )

1
n

n

x t
x t R

x t

⎧ ⎫
⎪ ⎪= ∈⎨ ⎬
⎪ ⎪
⎩ ⎭

 is the vector of time responses; 

 

( ){ }
( )

( )

1
n

n

f t
f t R

f t

⎧ ⎫
⎪ ⎪= ∈⎨ ⎬
⎪ ⎪
⎩ ⎭

 is the vector of excitation forces; 

 
Matrices [ ]M  (positive-definite), [ ]C  and [ ] ,n nK R∈  (positive definite or semi-
positive definite) are the symmetric matrices of mass, damping and stiffness, 
respectively.  
 

2.2. Undamped Free-Vibrations. Eigenvalues and Eigenvectors 
 
For the undamped system, without any excitation force, the equations of motion given 
by Eq. (2.1) become: 
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[ ] ( ){ } [ ] ( ){ } { }0M x t K x t+ = ,      (2.2) 
 
whose general solution is searched in the form: 
 

( ) { } i tx t x e ω=   (2.3) 
 
This type of solution means that we are assuming harmonic free responses with circular 
frequency ω . 
By introducing Eq. (2.3) into Eq. (2.2), the following eigenvalue problem is obtained: 
 
[ ] [ ]( ){ } { }0K M xλ− =  (2.4) 

 
where 2λ ω= . 
 
The problem expressed by Eq. (2.4) admits N  pairs of non-trivial solutions 

{ }( ),r rxλ ,  1,2, ,r n= … , the so-called eigensolutions, where: 
 
• r Rλ +∈  are the eigenvalues. The natural frequencies are given by: r rω λ= , 

 1,2, ,r n= … ; 
 
• { } n

rx R∈ are the eigenvectors or vibration natural mode-shapes. 
 
The eigenvalues are obtained from the following condition: 
 

[ ] [ ]( )det 0K Mλ− =   (2.5) 
 
whose development leads to the following characteristic polynomial: 
 

1
1 0 0n n

na aλ λ −
−+ + + =   (2.6) 

  
For each one of the n  eigenvalues, Eq. (2.4) gives the corresponding 
eigenvector{ }rX . It is usual to regroup the eigensolutions in the following matrices: 
 
Modal Matrix:[ ] { } { } { } ,

1 2
n n

nX x x x R⎡ ⎤= ∈⎣ ⎦   (2.7) 

 
Spectral Matrix: [ ] { } ,

1 2diag n n
n Rλ λ λΛ = ∈  (2.8) 

 
In general, it is assumed that the diagonal entries of the spectral matrix and the columns 
in the modal matrix are ordered according to the increasing magnitudes of the 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

EXPERIMENTAL MECHANICS - Structural Dynamics And Modal Analysis - D. A. Rade and V. Steffen, Jr 
 

©Encyclopedia of Life Support Systems (EOLSS) 

eigenvalues rλ . 
 
Matrix [ ]K  can be either positive-definite or positive semi-definite, according to the 
boundary conditions (kinematic constraints) of the system: when the constraints are 
sufficient to prevent any motion without deformation of the flexible elements [ ]K will 

be positive-definite; on the contrary, [ ]K  will be positive semi-definite. In the first 

case, all the eigenvalues of [ ]K will be positive and the corresponding vibration modes 
will be named as elastic modes. In the second case, the system will have a number p  of 

null eigenvalues ( )6p ≤ , to which correspond the so-called rigid body modes and a set 

of ( )n p−  elastic modes that are associated with positive eigenvalues. 
 
Examples: The 3 d.o.f. system represented by Figure 3(a) presents a null eigenvalue 
that corresponds to the rigid body mode represented 1k  by the set of displacements 

1 2 3x x x= =  that may occur without deformation of the springs and 2k . On the other 
hand, the system represented by Figure 3(b) does not exhibit any null eigenvalue 
because any arbitrary set of displacements { }1 2 3, ,x x x satisfying the boundary 
conditions leads to the deformation of at least one of the elastic elements. 

 
Figure 3. Three d.o.f. system under two different boundary conditions 

 
One of the most important property of the eigenvectors, is the so-called Orthogonality 
Property, with respect to mass and stiffness matrices, which are demonstrated in the 
following. 
For a given pair of eigensolutions { }( ),r rxλ , Eq. (2.4) is rewritten as: 
 
[ ]{ } [ ]{ }r r rK X M Xλ=   (2.9) 
 
For another pair { }( ),s sxλ , one has: 

 
[ ]{ } [ ]{ }s s sK X M Xλ=   (2.10) 
 

Pre-multiplying Eq. (2.9) by { }T
sx and Eq. (2.10) by{ }T

rx , successively, subtracting 
one resulting equation from the other, and accounting for the symmetry of matrices 
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[ ]K  and [ ]M , one writes:  
 

( ){ } [ ]{ }T 0s r r sx M xλ λ− =   (2.11) 
 
Assuming distinct eigenvalues, namely r sλ λ≠ , Eq. (2.15) is satisfied only if: 
 

{ } [ ]{ }T 0r sx M x =   (2.12) 
 

{ } [ ]{ }T 0r sx K x = ,  (2.13) 
 
for each and every pair of eigenvectors with r s≠ . 
 
Altogether, Eqs. (2.12) and (2.13) express the orthogonality properties of the 
eigenvectors, with respect to the mass and stiffness matrices, respectively. This is a 
fundamental property that is the basis of many of the vibration analysis methods, as will 
be seen in the remainder. 
 
From Eq. (2.4) it is possible to see that if { }rx  is an eigenvector, any collinear 

vector { }rxα , with 0α ≠  is also an eigenvector. This means that the norms of the 
eigenvectors are not determined uniquely and can be chosen arbitrarily, so that they 
satisfy: 
 

{ } [ ]{ }
{ } [ ]{ }

T

T
, 1,2, ,r r r

r r r r

x M x
r n

x K x

η

η λ

⎫= ⎪ =⎬
= ⎪⎭

…   (2.14) 

 
where , 1,2, ,r r nη = …  are the so-called generalized masses, whose values must be 
arbitrarily prescribed. Usually the eigenvectors are normalized in such a way to have 
unit generalized masses, i.e.: 
 

{ } [ ]{ }
{ } [ ]{ }

T

T

1
, 1,2, ,r r

r r r

x M x
r n

x K x λ

⎫= ⎪ =⎬
= ⎪⎭

…    (2.15) 

 
Based on the definitions given by Eqs. (2.7) and (2.8), the orthogonality relations (2.12) 
and (2.13), and the normalization Eqs. (2.15) can be grouped in the following matrix 
equations, in terms of the spectral and modal matrices: 
 

[ ] [ ][ ] [ ]TX M X N=   (2.16) 
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[ ] [ ][ ] [ ][ ]TX K X N= Λ   (2.17) 
 
where: 
 
[ ] { }1 2diag , , , rN η η η= …   (2.18) 
 
is the matrix of generalized masses. 
 

2.3. Expansion Theorem 
 
The orthogonality property of the eigenvectors demonstrated in the previous section 
ensure that, under the assumption of distinct eigenvalues, the eigenvectors of a n  d.o.f. 
vibratory system form a set of n  linearly independent vectors. In the context of Linear 
Algebra, this set is known to constitute a vector basis of the n -dimensional space which 
comprises the vectors that represent all the possible forms of motion of the system 
satisfying the prescribed boundary conditions. This means that any response of the 
system (free or forced motions) can be expressed uniquely as a linear combination of 
the n  eigenvectors, as follows: 
 

( ){ } { } ( ) [ ] ( ){ }
1

n

r r
r

x t x c t X c t
=

= =∑   (2.19) 

where ( )rc t  are the coefficients of linear combination, which are grouped in the vector 

( ){ } ( ) ( ) ( ) T
1 1 nc t c t c t c t= ⎡ ⎤⎣ ⎦ . 

 
Equation (2.19) expresses the Expansion Theorem or Principle of Modal Superposition, which 
represents the basis of all Modal Analysis procedures for linear mechanical systems. 
 

2.4. Free Responses of Undamped Systems to Initial Conditions 
 
For an n  d.o.f. undamped system subjected to a set of prescribed initial conditions, the 
equations of motion are obtained from Eq. (2.1), resulting: 
 
[ ] ( ){ } [ ] ( ){ } 0M x t K x t+ =   (2.20) 
 
satisfying: 
 

( ){ } { } ( ){ } { }0 00 , 0x x x x= =   (2.21) 
 
By using the Expansion Theorem, the solution of Eq. (2.20) is written as: 
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( ){ } [ ] ( ){ } { } ( )
1

n

r r
r

x t X c t x c t
=

= = ∑   (2.22) 

By introducing Eq. (2.22) into Eq. (2.20) and pre-multiplying the resulting equation by 

[ ]TX , one has: 
 

[ ] [ ][ ] ( ){ } [ ] [ ][ ] ( ){ }T T 0X M X c t X K X c t+ =  (2.23) 
 
Taking into account the orthogonality/norm relations (2.16) and (2.17), Eq. (2.23) 
becomes: 
 
[ ] ( ){ } [ ][ ] ( ){ } 0N c t N c t+ Λ =   (2.24) 
 
As [ ]N and [ ]Λ are diagonal matrices, Eq. (2.24) is comprised by n  uncoupled second 
order differential equations of the type: 
 
( ) ( )2 0, 1,2, ,r rc t t r nω+ = = …   (2.25) 

 
Each equation in (2.25) is similar to the equation of motion of a single d.o.f. undamped 
system, the solution of which is given below: 
 
( ) ( ) ( )cos sinr r r r rc t C t D tω ω= +   (2.26) 

 
Then, by introducing Eq. (2.26) into Eq. (2.22), one writes: 
 

( ){ } ( ) ( ) { }
1

cos sin
n

r r r r r
r

x t C t D t xω ω
=

= +⎡ ⎤⎣ ⎦∑  (2.27) 

 
The 2n  constants rC  and ,  1,...,rD r n=  appearing in Eq. (2.27) are obtained by 
imposing the initial conditions, as follows: 
 

( ){ } { } { }0
1

0
n

r r
r

x x C x
=

= = ∑   (2.28) 

 

By pre-multiplying Eq. (2.28) by { } [ ]T
sX M , accounting for the orthogonality 

relations, one has: 
 

{ } [ ]{ } { } [ ]{ }T T
0

1

n

s s s r s s
r

x M x C x M x C η
=

= =∑  (2.29) 
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Then: 
 

{ } [ ]{ }T
0

1 , 1, ,s s
s

C x M x s n
η

= = …   (2.30) 

 
By deriving Eq. (2.27) with respect to time, one obtains: 
 

( ){ } ( ) ( ) { }
1

sin cos
n

r r r r r r
r

x t C t D t xω ω ω
=

= − +⎡ ⎤⎣ ⎦∑  (2.31) 

 
from which: 
 

{ } { }0
1

n

r r r
r

x D xω
=

= ∑    (2.32) 

 
By following a procedure similar to that presented above for dealing with initial 
displacements, one has: 
  

{ } [ ]{ } { } [ ]{ }T T
0

1

n

s r r s r r s s
r

x M x D x M x Dω ω η
=

= =∑  (2.33) 

 
from which: 
 

{ } [ ]{ }T
0

1
s s

s s
D x M x

η ω
= , s=1,2,...,n  (2.34) 

 
By associating Eqs. (2.27) and (2.30) and (2.34) one obtains a general expression for the 
system’s response to an arbitrary set of initial conditions. It is worth mentioning that Eq. 
(2.27) states that the system’s time response is a linear combination of the eigenvectors, 
in which the coefficients of linear combination are harmonic functions whose 
frequencies correspond to the natural frequencies of the system ,  1,r r nω = … . 
 

2.4.1. Systems with Rigid Body Modes 
 
As discussed before, in the cases in which the kinematic constraints do not preclude the 
existence of rigid-body modes, the systems present a number p  of null eigenvalues 

( )6p ≤ . In such cases, for convenience, matrices [ ]X , [ ]Λ  and [ ]N are partitioned 
according to: 

[ ] [ ] [ ]1 2p n n p nX X X× − ×
⎡ ⎤= ⎣ ⎦  
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[ ]
[ ]

[ ]

1

2

0

0

p p

n p n p

N

N
N

×

− × −

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

[ ]
[ ]

[ ]

1

2

0

0

p p

n p n p

×

− × −

⎡ ⎤Λ
⎢ ⎥

Λ = ⎢ ⎥
⎢ ⎥Λ⎢ ⎥⎣ ⎦

 

 
where the index 1 holds for the rigid body modes and the index 2 refers to the elastic 
modes. 
 
By using the orthogonality relations (2.16) and (2.17), one writes: 
 

[ ] [ ][ ] [ ]
[ ] [ ][ ] [ ]
[ ] [ ][ ] [ ]
[ ] [ ][ ] [ ]

T
1 1 1

T T
1 2

T
2 2 2

0

X M X N

X M X N X M X

X M X N

⎧ =
⎪
⎪= → =⎨
⎪

=⎪⎩

 (2.35) 

 

[ ] [ ][ ] [ ][ ]
[ ] [ ][ ] [ ] [ ][ ]
[ ] [ ][ ] [ ]
[ ] [ ][ ] [ ][ ]

T
1 1 1

T T
1 2

T
2 2 2 2

0 0

0

X K X K X

X K X N X K X

X K X N

⎧ = ⇒ =
⎪
⎪= Λ → =⎨
⎪

= Λ⎪⎩

  

 (2.36) 
 
For each rigid-body mode 2 0, 1,2,...,r r r pλ ω= = =  corresponding modal equation 
of motion (2.25) simplifies to: 
 
( ) 0, 1, ,rc t r p= = …   (2.37) 

 
whose solution is expressed as follows: 
 
( ) ( ), 1, ,r r rc t C D t r p= + = …   (2.38) 

 
As seen before, for the elastic modes, the solution is given by: 
 
( ) ( ) ( )cos sin , 1, 2,...r r r r rc t C t D t r p p nω ω= + = + +  (2.39) 
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Returning to Eq. (2.27), the complete solution is obtained: 
 

( ){ } ( ){ } ( ) ( ) { }
1 1

cos sin
p n

r r r r r r r r
r r p

x t C D t x C t D t xω ω
= = +

= + + +⎡ ⎤⎣ ⎦∑ ∑   

 (2.40) 
 
By introducing the initial conditions, and following the procedure described previously 
in Section 2.5, one obtains the following expressions for the constants rC  and rD  : 
 

{ } [ ]{ }T
0

1 , 1, ,r r
r

C x M x r n
η

= = …   (2.41) 

 

{ } [ ]{ }

{ } [ ]{ }

T
0

T
0

1 , 1, ,

1 , 1, ,

r
r

r

r
r r

x M x r p
D

x M x r p n
w

η

η

⎧ =⎪⎪= ⎨
⎪ = +
⎪⎩

…

…
 (2.42) 

 
The association of (2.41), (2.42) and (2.27) provides the complete expression for the 
response to initial conditions of an n  d.o.f system containing p rigid-body modes. 
 
 
 
- 
- 
- 
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