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Summary 

  

The heat transfer enhancement techniques have been discussed. Both active methods 

requiring external energy input and passive methods requiring no additional external 

energy input have been discussed. Single-phase flow of liquids and gases has been dealt 

with and their enhancement techniques have been discussed at length. Also, boiling and 

condensation enhancement techniques are included in the discussion. Previously, the heat 

transfer enhancement techniques were using only simple geometries. Relatively complex 

geometries were limited by manufacturing processes. However, in the present days, 

advances in manufacturing methods have enabled using complex surface geometries. 

Higher and higher generation enhanced heat transfer surfaces are now being used in 

air-conditioning, automotive, electronic cooling, process and power industries. The 

present article deals with these advanced enhanced heat transfer surfaces. 

 

1. Introduction  

 

Energy must be saved by all means for the sustainable development of the planet earth. 

Heat transfer takes place in every walk of day-to-day life. Heat transfer must be enhanced 

to reduce consumption of energy. The heat transfer Q in heat exchangers is given by 

Q=hA∆T where h is the convective heat transfer coefficient, A is the surface area through 

which the heat is being transferred and ∆T is the temperature difference under which the 

heat is being transferred. The heat transfer may be enhanced by increasing either h, or A, 

or both. Of course, the increase in pressure drop in pumping the fluid should be kept to a 

minimum. Heat exchangers, without enhanced surfaces, are initially developed to use 

plain (or smooth) heat transfer surfaces. An enhanced heat transfer surface with a special 
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surface geometry provides a higher hA value per unit base surface area than a plain 

surface. The enhancement ratio, hE  is given by  

 h

p

hA
E

hA
  (1) 

 

where the subscript p  refers to the plain surface. The heat transfer rate for a two fluid 

counterflow heat exchanger is given by  

 

m m

UA
Q UA T L T

L
     (2) 

 

The term /L UA  is the overall thermal resistance per unit tube length. The performance 

of the heat exchanger will be enhanced if the term /UA L  is increased. If the heat 

exchange rate Q  is held constant, the heat exchanger length may be reduced. This will 

necessitate a smaller heat exchanger. For increased UA , with reduced mT , if Q  and 

L are held constant, the mT  may be reduced giving increased thermodynamic process 

efficiency and this yields reduced operating costs. For increased heat exchange, with 

constant L , the increased /UA L results in increased heat exchange rate for fixed fluid 

inlet temperatures. The enhanced heat exchanger needs reduced pumping power for fixed 

heat duty. 

 

1.1. The Heat Transfer Enhancement Techniques  

 

There are several heat transfer enhancement techniques. The techniques are classified 

into two major groupings: passive and active techniques. Passive techniques do not 

require external power; they have special surface geometries or fluid additives which 

cause enhancement. The active techniques require external power such as electric or 

acoustic fields and surface vibration.  

 

1.1.1. Passive Techniques  

 

Passive techniques are coated surfaces involving metallic or nonmetallic, nonwetting or 

hydrophilic coating on the surface. Rough surfaces may be either integral to the base 

surface formed by machining or restructuring the surface or made by placing a roughness 

adjacent to the surface. Figure 1(a) shows two examples of integral roughness. Figure 1 

(b) shows an enhanced rough surface for nucleate boiling. Artificial nucleation sites are 

formed by structuring the surface. The performance is much better than that in a plain 

surface. Also, there are extended surfaces. Figure 2 shows extended surfaces for liquids. 

Figure 2(a) shows an externally finned tube and Figure 2(b) shows an internally finned 

tube. Figure 2(c) shows internally finned tubes made by multiple concentric internally 

finned tubes. Figure 2(d) shows tubes containing a five-element extruded aluminum 

insert. The surrounding tube compressed onto the insert provides good thermal contact. 

Figure 2 geometries have also been used for forced convection vaporization and 

condensation. Displaced insert devices are used with single- and two-phase flows. These 

are devices inserted into the flow channel to improve heated surface energy transport 

indirectly. Figures 3 (a) and 3 (b) cause mixing in the main flow and mixing in the wall 
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region flow. Figure 3 (c) shows wire-coil insert placed at the edge of the boundary layer. 

In this case, the mixing is only within the boundary layer and the main flow is affected 

minimum. Swirl flow devices include a number of geometrical arrangements or tube 

inserts for forced flow that create rotating or secondary flow.  Such devices are full-length 

twisted-tape inserts, inlet vortex generators and axial core inserts with a screw-type 

winding. A flow inverter or static mixer is used for laminar flow and alternating 

clockwise and anti-clockwise swirls are generated in this device. Coiled tubes have 

secondary flow which produces higher heat transfer coefficient. Surface tension devices 

drain or transport liquid films during condensation and boiling. Additives for liquids are 

solid particles or gas bubbles and additives for gases are liquid droplets or solid particles.  

 

      
 

(a)                                                                    (b) 

 

Figure 1. (a) Tube side roughness for single-phase or two phase flow (b) rough surface for 

nucleate boiling [From Webb, R. L. and Kim, N. H., 2005, Principles of Enhanced Heat 

Transfer, Taylor & Francis, NY, USA, 2nd Edition.] 

 

 

 
 

(a)                                                                   (b) 

       
 

(c)                                         (d) 

 

Figure 2.  (a) Integral fins on outer tube surface (b) Internally finned tubes (axial and 

helical fins) (c) Cross sections of multiply internally finned tubes (d) tube with aluminum 

star insert [From Webb, R. L. and Kim, N. H., 2005, Principles of Enhanced Heat 

Transfer, Taylor & Francis, NY, USA, 2nd Edition.] 
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(a) 

 
 

(b) 

 

 
 

(c) 

 

Figure 3. (a) Spaced disk devices (b) Spaced streamline-shaped insert devices (c) 

Displaced wire-coil insert  [From Webb, R. L., 1987, Enhancement of Single-Phase Heat 

Transfer, Handbook of Single Phase Heat Transfer, S. Kakac, R. K. Shah and W. Aung, 

Eds., John Wiley and Sons, NY, USA.] 

 

1.1.2. Active Techniques  

 

Mechanical aids are surface scrapers. Surface vibration at low and high frequency 

improves primarily single-phase heat transfer. A piezoelectric device vibrates surface and 

impinges small droplets onto a heated surface promoting spray cooling. Fluid vibration in 

the range of 1 Hz to ultrasound is primarily used for single-phase heat transfer 

enhancement. Electrostatic fields, both a.c and d.c., in dielectric fluids cause greater bulk 

fluid mixing in the vicinity of the heat transfer surface. Injection of fluid causes 

single-phase heat transfer enhancement. Suction causes vapor removal in nucleate or film 

boiling. Jet impingement forces fluid normally or obliquely toward the surface.  

 

1.1.3. Usefulness of Enhancement  

 

Heat transfer enhancement may be in the form of increased h with A constant, increased 

A with h constant or both increased h and A. Figure 4 shows basic approaches to have 

doubly enhanced tubes by selecting independently the shell-side and tube-side 

enhancement geometries. Figure 4 (a) gives good tube-side enhancement for liquid flow 

and good shell-side condensation performance. Material aspect is of serious concern to 

choose a particular enhancement technique. One enhancement technique may be in 

competition with the other. The favored method is the one with the highest performance 
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at minimum cost for the material of interest.  

 

 
 

(a) 

 

 
 

(b) 

 
 

(c) 

 

 
(d) 

 

Figure 4. Methods used to make doubly enhanced tubes. (a) Helical rib roughness on 

inner surface and integral fins on outer surface, (b) Insert device (twisted tape) with 

integral fins on outer surface, (c) Corrugated inner and outer surfaces, (d) Corrugated 

strip rolled in tabular form and seam welded. [From Webb, R. L., 1987, Enhancement of 

Single-Phase Heat Transfer, Handbook of Single Phase Heat Transfer, S. Kakac, R. K. 

Shah and W. Aung, Eds., John Wiley and Sons, NY, USA.] 
 

2. Performance Evaluation Criteria (PEC)  
 

An enhancement technique is accepted only when its performance is better than the 

performance of the plain smooth surface. The three considerations in surface 

performance are the performance objective, the operating conditions and the constraints.  

The basic performance characteristic of an enhanced surface for single-phase heat 

transfer is defined by the Colburn j-factor and f vs. Reynolds number curves. The 

pressure drop constraint is a very important consideration for calculating the performance 

benefits of an enhanced surface in single-phase flow. The PEC analysis for two-phase 

heat transfer is differently evaluated since the pressure drop of a two-phase fluid also 
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reduces the local saturation temperature of the fluid. Thus the driving potential for heat 

transfer is also affected. The PEC for single-phase flow is modified to account for the 

effect of pressure drop and the PEC for two-phase flow (boiling and condensation) is 

obtained.  
 

FG criteria: The cross-sectional flow area and tube length are held constant. FN criteria: 

The cross-sectional flow area remains fixed whereas the length of the heat exchanger 

varies. VG criteria: The heat exchanger is sized for a required heat duty with a specified 

flow rate. Table 1 and Table 2 show the PEC for single-phase heat exchange system and 

two-phase heat exchange system with constant tube inside diameter, respectively.  
 

  Fixed 

Case Geometry W P Q Ti Objective 

FG-1a N, L
a
 x   x Q 

FG-1b N, L
a
 x  x  Ti 

FG-2a N, L
a
  x  x Q 

FG-2b N, L
a
  x x  Ti 

FG-3 N, L
a
   x x P 

FN-1 N x x x x L 

FN-2 N x  x x L 

FN-3 N x  x x P 

VG-1  x x x x NL 

VG-2a N, L
b
 x x  x Q 

VG-2b N, L
b
 x x x  Ti 

VG-3 N, L
b
 x x x x P 

 

Table 1. Performance Evaluation Criteria for Single-Phase Heat Exchange System with di 

=constant [From Webb, R. L. and Kim, N. H., 2005, Principles of Enhanced Heat 

Transfer, Taylor & Francis, NY, USA, 2
nd

 Edition.] 
 

  Fixed 

Case Geometry W Pw Q Ti Objective 

FG-1a N, L   x  Q 

FG-1b N,L  x x x Ti 

FG-3 N, L x  x x Pw 

FN-1 N x  x x L 

FN-2 N x  x x L 

FN-3 N x  x  Pw 

VG-1  x x x  NL 

VG-2a N, L  x  x Q 

VG-2b N, L  x  x Ti 

VG-3 N, L x  x  Pw 

 

Table 2. Performance Evaluation Criteria for Two-Phase Heat Exchange System 

[From Webb, R. L. and Kim, N. H., 2005, Principles of Enhanced Heat Transfer, Taylor 

& Francis, NY, USA, 2
nd

 Edition.] 
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