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Summary 
 
Controlled electrical drives can be regarded as the most flexible and efficient source of 
controlled mechanical power. Understanding and developing the controlled electrical 
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drive systems require a multi-disciplinary knowledge, starting from electrical machine 
theory, through electronic power converter technology to control system design 
techniques. This article gives a systematic overview of elements of a controlled 
electrical drive with emphasis on the control system design. The basic procedure of 
feedback and feedforward cascade control system design is presented for the separately-
excited DC motor. It is then demonstrated that the basic principle of current/torque 
control can be applied to AC machines modeled in the rotational field coordinate frame, 
while the superimposed speed and position controller structure remains the same as with 
the DC motor. Finally, a notable attention is paid to analysis of transmission 
compliance, friction, and backlash effects, and their compensation by means of 
advanced control algorithms. 
 
1. Introduction 
 
Electrical drives represent a dominant source of mechanical power in various 
applications in production, material handling, and process industries. Applying the 
feedback control techniques to electrical drives substantially improves their 
performance in terms of achieving precise and fast motion control (servo-control) with a 
high efficiency. Traditionally, the controlled electrical drives were based on direct-
current (DC) motors and analog controllers. However, the rapid development of power 
electronics and microprocessor technology in the last three decades has propelled 
application of servo-control to brush-less, alternating-current (AC) drives, and provided 
implementation of advanced motion control algorithms including compensation of 
transmission compliance, friction, and backlash effects. The overall control 
performance, efficiency, reliability, and availability of the controlled electrical drives 
have been substantially improved, thus accelerating their penetration into various 
engineering applications. 
 
This article presents an overview of controlled electrical drive technology with 
emphasis on control system design. The presentation is based on the separately-excited 
DC motor, since control of this motor can be easily understood and readily extended to 
AC motors. First, the elements of a controlled electrical drive are described (Section 2), 
which include DC motor and its mathematical model, electronic power converters, 
sensors, and electronic control units including the basic control algorithms. Next, the 
steady-state form of DC motor model is used to describe the motor speed adjustment (or 
open-loop control) in the regions below and above the rated speed, as well as the 
controlled starting and regenerative braking of the motor (Section 3). This serves as a 
basis for presenting a cascade structure of motor feedback control, including optimal 
tuning of current, speed, and position controllers (Section 4). For tracking applications, 
the feedback system is extended by feedforward paths or a feedforward compensator, in 
order to reduce the dynamic tracking error (Section 5). Section 6 shows, on an example 
of permanent-magnet synchronous motor (PMSM), how the naturally decoupled 
armature and field control of DC motor can be applied to the coupled dynamics of 
three-phase AC motors. Finally, Section 7 analyzes influences of transmission 
insufficiencies related to compliance, friction and backlash effects on the static and 
dynamic behavior of a servodrive, and presents control algorithms for compensating 
these effects. The theoretical discussions are illustrated by a number of computer 
simulation results. 
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2. Elements of Controlled Electrical Drive 
 
Figure 1 shows the structural block diagram of a controlled electrical drive. An 
electrical motor is coupled to a working mechanism in order to provide a transfer of 
mechanical power. The main additional features of controlled electrical drives 
compared to their conventional counterparts are: (i) the power transfer is made time 
variant/controllable using an electronic power converter , and (ii) the drive motion can 
be controlled in a precise manner based on the use of feedback paths containing sensors 
and electronic control unit.  
 
The control tasks can be different, starting from current control (corresponding to open-
loop torque/force control), through speed and position control, and towards force 
control. Normally, the controlled power flows from the electrical grid to the working 
mechanism. However, during transients or occasional continuous braking intervals, the 
motor switches to a generator mode and the power flows back to the grid. If the power 
converter does not support the regenerative braking feature (typically in low-power 
drives), the braking power is dissipated on a braking resistor. 

 
 

Figure 1. Structural block diagram of controlled electrical drive. 
 
2.1. Separately-Excited DC Motor 
 
Direct-current (DC) motor (see cross-section schematic in Fig. 2a) consists of a 
magnetic field flux (excitation) circuit (placed on the stator), armature circuit (placed on 
the rotor), and a commutator which inverts the current in an armature coil whenever it 
passes through the neutral zone that is perpendicular to the stator field axis. The power 
is transferred to the armature through brushes that are fixed in the neutral zone and 
leaned to the commutator.  
 
The excitation and armature circuits can be connected separately from each other, or a 
series or parallel connection can be utilized instead. The separately-excited DC motors 
are mostly used in controlled drives, owing to the possibility of independent field and 
armature current control and related superior control features in a wide speed range. 
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Figure 2. Simplified cross-section schematic (a) and equivalent scheme of separately-

excited DC motor. 
 
2.1.1. Dynamic Model 
 
Figure 2b shows an equivalent scheme of the separately-excited DC motor. The stator 
magnetic flux Φ  acts upon the armature current ai , thus producing the motor torque. 
On the other hand, when the rotor rotates, the voltage e (back electromotive force, 
EMF) is induced in the armature winding. The motor dynamics are described by the 
following set of differential equations (see Nomenclature), given in both time ( t ) and 
Laplace ( s ) domain: 
 

a
a a a a a a a a a

( )( ) ( ) ( ) ( ) ( ) ( ) ( )di tu t R i t L e t u s R i s L si s e s
dt
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where M( )iΦ  is the nonlinear static magnetizing curve. The armature circuit, Eq. (1a), 
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can be described by the following transfer function 
 

a a

a a a a

( ) 1
( ) ( ) 1
i s K

u s e s L s R T s
= =

− + +
, (2) 

 
where a a1K R=  and a a aT L R=  are the armature gain and armature time constant, 
respectively. Based on Eqs. (1) and (2), a block diagram of the motor model can be 
created, as shown in Figure 3a. In the basic case of constant excitation circuit voltage 

M( const. const.)u = ⇒Φ =  or permanent-magnet excitation, the block diagram reduces 
to the one shown in Figure 3b based on the following substitutions: t mK K= Φ  and 

v eK K= Φ . 

 
 

Figure 3. Block diagram of DC motor: (a) general case and (b) constant-flux case. 
 
2.1.2. Steady-State Curve 
 
Under the steady-state conditions, the time-derivatives of motor dynamic variables 
vanish (e.g. a 0; 0di dt s= ≡ ). After rearranging the steady-state forms of motor 
equations (1), the following expression for the motor steady-state curve is obtained: 
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a a
m2

e e m

0 m( )

u R m
K K K

m

ω

ω ω

= −
Φ Φ

Δ

. (3) 

 
The steady-state curve is shown in Figure 4. Since the armature resistance aR  is 
relatively small (particularly for high-power machines), the steady-state curve is rather 
stiff, i.e. the motor speed drop ωΔ  due to the increase of load l mm m=  is small 
compared with the idle speed 0ω . The drive operating point is determined as the cross-
section point of the motor and load static curves (Fig. 4; note that m lm m=  is valid for 
the steady-state conditions according to Eq. (1c)). If the motor speed is lower than the 
idle speed: 0 a a 0e u iω ω< ⇒ < ⇒ > , the motor operates in the driving mode (1st 
quadrant of the coordinate system in Fig. 4). Otherwise, for the case when 0ω ω>  
( ae u>  and a 0i < ), the machine operates in the generator braking mode, thereby 
producing the electric energy and transmitting it to the grid (2nd quadrant in Fig. 4). For 
the reverse motion ( 0ω < ), the driving and braking modes relate to the 3rd and 4th 
quadrants, respectively (see also Section 3). 
 

 
 

Figure 4. Steady-state curve of DC motor and construction of operating point. 
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