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Summary 
 
After a short introduction to the Periodic Table and to the transition metals, some 
general features of the coordination compounds are discussed aimed to introduce the 
reader to the most important features of this class of compounds. For sake of clarity, 
distinction is made between classical Werner complexes and transition metal 
organometallic compounds, i.e., complexes containing at least one metal-carbon bond. 
A Section is devoted to the reactivity of coordination compounds and some of the most 
important reaction modes involving the central metal atom have been considered. 
 
1. Introduction 
 
Any approach to the synthesis of chemical compounds must face the main question 
concerning the properties of the elements involved in the process, thus a general view of 
the properties of the transition elements will be given first. 
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About 70% of the 92 chemically relevant elements of the Periodic Table have metallic 
properties in the bulk (i.e., high electrical and thermal conductivities, high reflectivity, 
high melting and boiling points) and most of these metals are known as transition 
elements. Strictly speaking [Cotton F.A. et al., 1999] a transition element is a substance 
which, as element, has partially filled d or f shells. However, a slightly broader 
definition is generally adopted and includes also elements that have partially filled d or f 
shells in any of their commonly occurring oxidation states. For this reason copper(II) 
and gold(III) are considered transition metals. 
 
This large number of transition elements is divided into three groups: a) the main 
transition elements, b) the lanthanide elements and c) the actinide elements. 
 
I will focus the attention on the main transition elements or d-block which includes the 
elements that have partally filled d shells only, Figure 1. Throughout this article, the 
classification of chemical elements in Groups from 1 to 18 inclusive will be adopted 
[Fluck E., 1988; Leigh G.J., 1990]. The lightest element is scandium (3d14s2) and the 
eight succeeding elements, titanium to copper, form the first transition series. The 
second transition series starts with yttrium (4d15s2) and finishes with silver. Silver is 
followed by a sequence of elements in which there are no d-shell vacancies under 
chemically significant conditions until lanthanum (5d16s2) is reached. With lanthanum, 
f-orbitals have become slightly more stable than the d-ones, thus electrons fill the f-
orbitals until lutetium. Although lanthanum and lutetium might be considered as 
transition elements because they have partially filled d-orbitals, for chemical reasons 
lanthanum is considered the prototypal of a series of 14 elements called lanthanides. 
Hafnium may be thus considered as the first member of the third transition series. 
 

 
 

Figure 1. The Periodic Table of the chemical elements disposed according to Groups 
(from 1 to 18) and Periods (from 1 to 7). 
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The three series of elements described above, exibit a number of characteristic 
properties which together distinguish them from other groups of elements: 
 

 Most of them display numerous oxidation states. An important characteristic of 
transition metal chemistry is the formation of compounds with low (often zero or 
negative) oxidation states which has little parallel outside the transition 
elements. 

 They have high propensity to give coordination compounds with Lewis bases. 
This is due to the ability of transition metal cations to behave as Lewis acids, 
i.e., to accept electron pairs. 

 One of the consequences of the open (incompletely filled) dn configuration of a 
transition metal ion is the presence of one or more unpaired electrons which 
produces magnetically active coordination compounds (paramagnetic species). 

 A striking feature of transition metals is the color which generally characterizes 
their compounds, which again has no correspondance for main group metal 
compounds. 

 
It is generally accepted that compounds containing at least one carbon atom and no 
metals are classified in the area of organic chemistry. By contrast, compounds 
containing one or more metal atoms are considered to be inorganic. The coordination 
compounds therefore belong to the inorganic derivatives. For sake of clarity, I will 
divide metal coordination compounds into two groups: A) Werner complexes and B) 
Organometallic compounds. This classification places all the compounds that do not 
contain a M−C bond and the cyanides in group A, while group B includes derivatives 
containing at least one metal-carbon bond thus representing an interface between 
classical organic and inorganic chemistry. 
 
2. Coordination Compounds: Generality 
 
Coordinations compounds play an essential role in the chemical industry and in life 
itself. The 1963 Nobel Prize in Chemistry was awarded jointly to Karl Ziegler (Max 
Planck Institute fur Kohlenforschung, Mannheim, Germany) and to Giulio Natta 
(University of Milan, Italy) "for their discoveries in the field of the chemistry and 
technology of high polymers". The Ziegler-Natta catalyst for this polymerization 
reaction is a complex of aluminum and titanium. 
 
The importance of coordination complexes becomes even clearer when one realizes that 
chlorophyll, which is vital to photosynthesis in plants, is a magnesium complex and that 
hemoglobin, the oxygen carrier in the animal cells, is an iron complex. 
 
As cited in the Introduction, the formation of complexes is often accompanied by 
striking changes in color. For example, you can use aqueous solutions of CoCl2 as 
invisible ink; what is written with this solution does not turn visible until the paper is 
heated. A blue colored writing turns visible and slowly disappears. The phenomenon 
responsible for the appearance of the color is reported in Eq. (1). The pink aquo-
complex [Co(H2O)6]2+ is almost colorless when dilute, so the writing done with it is 
pratically invisible. Upon heating, water is driven off, the blue complex [CoCl4]2− is 
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formed and the color turns sufficiently intense that the writing appears. Upon standing, 
water is taken up from the atmosphere and the original colorless writing is regenerated. 
 
[Co(H2O)6]2+ → [CoCl4]2− (1) 
 pink blue 
 
A useful concept in coordination chemistry is the “effective atomic number rule” (EAN 
rule), introduced by N.V. Sidgwick of the University of Oxford, UK [Sidgwick N.V., 
1941]. This formalism can be considered an extension of the well-known “octet rule” of 
Period 2 (from Li to Ne) to the elements of the longer Periods from 4 (from K to Kr) to 
6 (from Cs to Rn) inclusive: for this reason the EAN rule is also known as the "18-
electron rule". Transition metals acquire electrons to fill their valence orbitals by 
forming bonds to ligand molecules that act as electron donors. The 18-valence electrons 
are then the sum of the number of electrons initially present in the "bare" metal atom 
and the electrons donated by the ligands. Although organometallic complexes 
frequently obey the 18-electron rule, metals in Werner-type complexes frequently do 
not follow the rule. Generally, Werner complexes contain metal ions in relatively high 
oxidation state which means that there are relatively few electrons on the "bare" metal 
atom. When ligands coordinate to the metal ion, the preferred coordination number for 
the particular metal is reached before 18-valence electrons can be acquired. For 
example, [Ti(H2O)6]3+ contains a Ti(III) ion of d1 electronic configuration and six water 
molecules, each donating two electrons to titanium: the valence shell electron count is 
therefore 13. On the other hand, in many types of organometallic complexes, such as 
metal carbonyls (Section 2.2.4), the metals are in low oxidation state, i.e., a large 
number of valence electrons is present on the "bare" metal atom. Both the electron pairs 
donated by the ligands and the coordination number typical of the metal guarantee the 
complete filling of the valence shell. The 18-electron rule represents a useful tool in 
organometallic chemistry to decide whether a given d-block compounds is likely to be 
stable. 
 
Some of the properties of transition metal coordination compounds can be rationalized 
on the basis of some bonding schemes. The first attempt was made through the valence 
bond (VB) theory [Pauling L., 1960], utilizing hybrid orbitals centered on transition d 
elements. For example, the octahedral and square-planar geometries were treated in 
terms of d2sp3 and dsp2 hybridizations, respectively, of the empty valence orbitals of the 
metal accepting electron pairs from the ligands. This scheme, which is able to justify, in 
some cases, the magnetic properties of the complexes, cannot explain other important 
features of transition metal complexes such as their absorption spectra or, in other 
words, their colors. 
 
The so-called Crystal Field Theory, initially introduced by H. Bethe, was used 
extensively by chemists [Van Vleck J.H., 1935]. This theory, as it was initially stated, 
considers the electrostatic effect of a given number of negative point charges around a 
metal cation of dn electronic configuration. The five empty d orbitals have identical 
energies (they are degenerate). If the point charges are distributed along preferential 
directions in space, the orbitals will undergo an energy separation. If the charges are six, 
and the cartesian axes are chosen along the x, y, z directions corresponding to the 
vertices of an octahedron, two new sets of degenerate orbitals will originate, namely, 
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dxy, dxz, dyz − called t2g orbitals − at lower energy and dx2 − y2, dz2 − called eg orbitals − at 
higher energy, due to the directional properties in space of the d orbitals. With the total 
energy being maintained, the energy splitting qualitatively shown in Figure 2 will result. 
Analogously, crystal field splittings can be obtained for other type of geometries 
(tetrahedral, square pyramidal....) [Huheey J.E., 1993]. 
 
An interpretation of both the absorption spectra and the magnetic properties of transition 
metal complexes is now available. As a matter of fact, the low-energy, threefold-
degenerate set dxy, dxz, dyz can be used to locate the n electrons of the dn configuration. 
For example, for a coordination compound of vanadium(II) of 3d3 electronic 
configuration containing six ligands L (i.e., [VL6]

2+), only one possibility exists of 
filling the low-energy t2g set with the three unpaired electrons, according to the Hund 
rule. However, if a fourth electron is added, such as, for example, in the case of the 
derivative of 3d4 chromium(II), [CrL6]

2+, two possibilities arise: the fourth electron may 
be positioned in the eg set, giving rise to an electronic configuration t2g

3eg
1 (high-spin) 

or be paired up in the lower energy level, as t2g
4 (low-spin). The choice between the two 

possibilities will depend on the relative amount of two quantities: the energy splitting Δo 
and the spin-pairing energy P. The high-spin and low-spin configurations correspond to 
different magnetic properties; this can be verified experimentally by measuring the 
magnetic susceptibility of a solid sample of a given substance; low-spin configurations 
correspond to a relatively low magnetic susceptibility or to a completely diamagnetic 
behavior. 
 

 
 

Figure 2. Crystal field splittings of the d orbitals for an octahedral complex. 
 
A more sophisticated treatment of transition metal complexes is based on the 
combination of ligands and metal orbitals to give molecular orbitals (MO). For an 
octahedral system, the energy-level diagram is represented in Figure 3. The orbitals of 
the six ligands combine with the metal-based orbitals of appropriate symmetry giving 
rise to an equal number of bonding and antibonding orbitals. The t2g orbitals have no 
ligand orbitals of appropriate symmetry to combine with, and therefore are not 
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modified. Within this bonding scheme, oΔ  now corresponds to the energy separation 
between the nonbonding t2g orbitals and the antibonding eg orbitals. As it can be seen 
from Figure 3, different ligands (F− vs. NH3) determine a different oΔ  thus causing the 
formation of high- or low-spin complexes. 
 
The orbital-splitting oΔ  can be measured experimentally and ligands can be arranged in 
the so-called spectrochemical series according to their capacity to induce the orbital 
separation. Part of the spectrochemical series is represented below, showing induction 
of larger oΔ  by ligands from left to right. 
 
I− < Br− < Cl− < NO3− < F− < OH− < C2O4

2− < H2O < NH3 < pyridine < 2,2’-
bipyridyl << CN−, CO, PR3 

 
 

Figure 3. MO diagrams for high-spin [CoF6]3− and low-spin [Co(NH3)6]3+ complex ions. 
 
 
Crystal Field Theory (CFT) and Molecular Orbital (MO) theory, confirmed by some 
supporting experimental evidence, allow some generalization to be made when d 
transition metal cations belonging to the same Group are considered: 
 

 The orbital splitting Δ  increases in the sequence 3d < 4d < 5d. 
 Because of the increase of the field splitting, metal cations of the Periods 5 and 6 

(i.e., of the second and third transition d series) will tend to pair their electrons 
and to give low-spin complexes. 
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 Absorption spectra due to d → d transitions will tend to shift towards high-
energies (UV), on descending a vertical sequence of elements. Unless some 
charge transfer (CT) bands are present, the complexes of 4d and 5d transition 
metals frequently tend to be colorless. 

 
2.1. Werner Complexes 
 
Most of the early work on coordination compounds was done with ammonia and the 
resulting complexes were and are known as metal ammines. It was also found that other 
amines and anions such as CN−, NO2

−, NCS−, Cl−, form metal complexes. Eqs. (2)-(4) 
correspond to the synthesis of typical Werner’s compounds. 
 
[Co(H2O)6]3+ + 3 H2NCH2CH2NH2 → [Co(H2NCH2CH2NH2)3]3+ + 6 H2O(2) 
 pink orange 

[Fe(H2O)6]3+ +  NCS− → [Fe(NCS)(H2O)5]2++ H2O (3) 
 yellow-orange red 
 
[Cu(H2O)6]2+ + 2 NH3 → [Cu(H2O)4(NH3)2]2+ + 2 H2O                          (4) 
 light blue deep blue 
 
Our present understanding about the nature of metal complexes is due to Alfred Werner, 
professor of chemistry in Zurich, and winner of the Nobel Prize in 1913 "in recognition 
of his work on the linkage of atoms in molecules by which he has thrown new light on 
earlier investigations and opened up new fields of research especially in inorganic 
chemistry". He proposed what is currently known as Werner's coordination theory 
which consists of three postulates [Werner A., 1919]: 
 

 Most elements exibit a primary and a secondary valence (oxidation state and 
coordination number, respectively, according to the modern terminology); 

 Every element tends to satisfy both its primary and secondary valence; 
 The secondary valence is directed towards fixed positions in the space. 

 
According to the theory, the compound previously described with the formulation 
CoCl3·6H2O was formulated as [Co(H2O)6]Cl3: the primary valence of cobalt, i.e., the 
oxidation state, is three (the three chloride ions saturate the primary valence). The 
secondary valence, or coordination number, of Co(III) is six and it is saturated by the 
ammonia molecules, so that the chloride ions are not bonded to cobalt. The solution of 
[Co(H2O)6]Cl3 contains 4 ions, three Cl− ions and the complex cation [Co(H2O)6]3+. 
 
Postulate three of Werner's theory deals specifically with the stereochemistry of metal 
complexes. Werner started with the assumption that a six-coordinated complex has a 
structure in which six ligands are situated at positions symmetrically equidistant from 
the central atom. Due to the availability of an expanded shell of valence orbitals, typical 
of transition metals, more complex geometries than those already known at that time for 
carbon were detected. In addition to the tetrahedral one (Figure 4A), other geometries 
were discovered, namely, square-planar (Figure 4B) and octahedral (Figure 4C). As a 
matter of fact, based on the number of isomers for a given compound, Werner was able 
to demonstrate that a six coordinate complex should have an octahedral structure, i.e., 
the six M−L bonds are directed towards the vertices of an octahedron. 
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Figure 4. The most common coordination polyhedra. 
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