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Summary 
 
Inorganic nanosystems are defined as nanosized chemical objects whose composition is 
merely inorganic and which exhibit peculiar features due to quantum-size and 
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geometrical effects. Two are the general synthetic pathways by which nano-objects are 
obtained: the so-called ‘top-down’ and ‘bottom-up’ approaches. Mainly in the latter 
method, chemistry plays a unique role in assembling and building up nanometric units 
from smaller ones. The nanosystems can be defined and classified according to the 
hierarchical order of dimensionality. Zero-dimensional systems include pseudo-
spherical objects such as nanoclusters and nanoparticles, supported onto inorganic bulk 
supports as well as in colloidal solutions, or ceramic nanopowders. One-dimensional 
systems take into account carbon-based, metal-based or even oxide-based systems in 
which the extension over one dimension is predominant over the other two, such as 
solid nanofibers, nanowires or nanorods, as well as hollow nanotubes. As two-
dimensional nanosystems, the crystalline flat nanometric materials, such as nanodiscs or 
nanoprisms, and the amorphous nanofilms and nanomembranes are considered. Then, 
three-dimensional nanosystems consist of both crystalline and amorphous 
nanostructures, such as nanocrystals and a very large variety of ordered nanoarranged 
porous materials. Three-dimensional arrangements can be also created from simpler 
components, as nanoparticles or nanorods, and superstructures or superlattices with 
improved features are thus obtained. 
The description, the synthesis, the properties and the main applications in technology 
and industry of the chemical systems at nanoscale most commonly found in inorganic 
chemistry are here summarized and reviewed. Finally, few highlights are given on 
inorganic-organic hybrid nanosystems and on systems with applications in 
biochemistry, as these subjects are on the borderline with organic chemistry and 
biology. 
 
1. Introduction 
 
The prefix “nano” has found in last decade an ever-increasing application to different 
fields of the knowledge. Nanoscience, nanotechnology, nanomaterials or nanochemistry 
are only a few of the new nano-containing terms that occur frequently in scientific 
reports, in popular books as well as in newspapers and that have become familiar to a 
wide public, even of non-experts. 
 
The prefix comes from the ancient Greek να̃νος through the Latin nanus meaning 
literally dwarf and, by extension, very small. Within the convention of International 
System of Units (SI) it is used to indicate a reduction factor of 109 times. So, the 
nanosized world is typically measured in nanometers (1 nm corresponding to 10-9 m) 
and it encompasses systems whose size is above molecular dimensions and below 
macroscopic ones (generally > 1 nm and < 100 nm). 
 
1.1. Distinctive Features of Nanosystems 
 
Inorganic nanosystems are defined as the chemical objects whose composition is merely 
inorganic and which exhibit new phenomena due to quantum-size effects and to the 
occurrence of large amounts of surfaces and interfaces because of their reduced size in 
the nanometer scale (1 - 100 nm). In fact, isolated molecules exhibit properties that 
follow quantum mechanical rules, while the chemical and physical properties of bulk 
materials obey the laws of classical mechanics. In the middle, nanosystems display 
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electronic, photochemical, electrochemical, optical, magnetic, mechanical or catalytic 
properties that differ significantly not only from those of molecular units, but also from 
those of macroscopic systems. 
 
Quantum-size effects arise in nanosized objects because their global dimensions are 
comparable to the characteristic wavelength for fundamental excitations in materials. 
These excitations (including the wavelength of electrons, photons and so on) carry the 
quanta of energy through materials and therefore govern the dynamics of their 
propagation and conversion from one form to another. However, if the size of the 
structures falls in the same order of magnitude of these characteristic wave functions, 
the propagation and the behavior of quanta are noticeably perturbed and thus quantum 
mechanical selection rules, which are not usually evident at larger scale, appear. For 
example, in the case of metals, typical "metallic" properties, like conductivity, decrease 
when the size is reduced and when the number of constituent atoms in the sample is 
significantly diminished. Indeed, the electronic conduction band of a metal gradually 
evolves from continuous levels of a bulk infinite material into discrete states as a 
function of size reduction, resulting in an increase in the band-gap energy (Scheme 1). 
 

 
 

Scheme 1 
 
Nanoscale materials also exhibit size-dependent magnetic behavior. For instance, at 
very small sizes, magnetic nanoclusters have a single magnetic domain and the strongly 
coupled magnetic spins of each atom combine cooperatively to give rise to a system 
with a single “giant” spin. 
 
In addition, nanosized materials possess very high surface to volume ratios because of 
the fine grain size and they are characterized by a very large amount of low-
coordination number atoms at edge and corner sites. Such preponderance of surfaces is 
a major reason for the change in chemical behavior of materials at the nanoscale. The 
atoms in nanostructures have a higher average energy than atoms in larger structures, 
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because most of them are surface atoms. Consequently, the activity of a catalytic 
material can be exponentially improved as the catalyst is reduced in size at the 
nanoscale. In summary, in the nanometric world, the properties of nanosystems are 
remarkably affected by sometimes minor changes in size, shape or surface state of the 
structures. Indeed, three factors, namely (1) synthesis, (2) composition and structure and 
(3) functional properties, represent the essential relations in nanoscience. 
 
1.2. General Aspects of Synthesis 
 
Atoms and molecules are the essential building blocks of every object. The manner in 
which things are constructed with these basic units is vitally important to understand 
their properties and their reciprocal interactions. An efficient control of the synthetic 
pathways is essential during the preparation of nanobuilding blocks with different sizes 
and shapes that can lead to the creation of new devices and technologies with improved 
performances. To do this, two opposite, but complementary approaches are pursued. 
One is a top-down strategy of miniaturizing current components and materials, while 
the other is a bottom-up strategy of building ever-more-complex molecular structures 
atom by atom or molecule by molecule. These two different methods highlight the 
organization level of nanosystems as the crossing point hanging between the worlds of 
molecular objects and bulk materials. 
 
The top-down approach has been advanced by Richard Feynman in his often-cited 1959 
lecture stating that “there is plenty of room at the bottom” and it is ideal for obtaining 
structures with long-range order and for making connections with macroscopic world. 
Conversely, the bottom-up approach was pioneered by Jean-Marie Lehn (revealing that 
“there is plenty of room at the top”) and it is best suited for assembly and establishing 
short-range order at the nanoscale. The integration of the two techniques is expected to 
provide, at least in principle, the widest combination of tools for nanofabrication. 
 
1.2.1. Top-down Approach 
 
The top-down approach is based on miniaturizing techniques, such as machining, 
templating or lithographic techniques. Top-down methods usually start from patterns 
generated at larger scale (generally at microscale) and then they are reduced to 
nanoscale. A key advantage of the top-down approach is that the parts are both 
patterned and built in place, so that no further assembly steps are needed. 
 
By means of electronic, ionic or X-ray lithography, a monolith can be cut step by step in 
order to generate a quantum well (a bidimensional structure, with two finite dimensions) 
at first, then a quantum wire (a monodimensional structure, one finite dimension), and 
finally a quantum dot (a zero-dimensional structure, all the dimensions being in 
nanoscale). Current short-wavelength optical lithography methods can reach dimensions 
not less than 100 nanometers (the traditional threshold definition of the nanoscale). 
Extreme ultraviolet and X-ray sources are being developed to allow lithographic 
printing techniques to reach dimensions from 10 to 100 nanometers, but the principal 
limits are still due to the difficulty of beam focalization. Likewise, scanning beam 
techniques such as electron-beam lithography provide patterns down to about 20 
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nanometers and still-smaller features are obtained by using scanning probes to deposit 
or remove thin layers. 
 
The general procedure of mechanical printing techniques consist on making a master 
“stamp” by a high-resolution lithographic technique, as described above, and then 
applying this stamp, or subsequent copies of it, to a surface to mould the pattern. The 
last step is to remove the thin layer of the masking material under the stamped regions. 
These nanoscale printing techniques offer several advantages due to the possibility to 
use a wide variety of materials with curved surfaces. 
 
As a general drawback, these techniques are not cheap and require a complex 
manufacturing. In addition, top-down methodologies: (1), even if they work well at the 
microscale, they collide with some difficulties at nanoscale dimensions and (2) they 
usually lead to the formation of bidimensional structures and hence, as they are carried 
out by the addition or subtraction of patterned layers, they cannot easily give rise to the 
production of arbitrary three-dimensional objects. 
 
It is worth underlining that the development in the top-down methodology was mainly 
driven from the traditional disciplines of materials engineering and physics, whereas the 
role of inorganic chemists has been minor in the exploitation of these techniques. 
 
1.2.2. Bottom-up Approach 
 
Bottom-up, or self-assembly, approaches to nanofabrication involve gradual additions 
of atoms or groups of atoms. This technique uses chemical or physical forces operating 
at the nanoscale to assemble basic units into larger structures. The chemical growth of 
nanometer-sized materials often implies colloidal or supramolecular systems and it 
frequently passes through phase transformations, such as vapor deposition on surfaces 
or precipitation of a solid phase from solution. Inspiration for bottom-up approaches 
comes from biological systems, where nature has employed chemical forces to create 
essentially all the structures needed by life. Researchers try to mimic nature's ability to 
produce small clusters of specific atoms, which can then self-assemble into more-
elaborated structures (Figure 1). 
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Figure 1. Bottom-up approach. The precursors (left) can react and assemble to form 
nanosystems with a large variety of shapes and sizes (right), depending on the reaction 

conditions. 
 
In order to reach the desired shape and dimension of the new nanosystem, the 
nucleation and growth of the material have to be directed and controlled. This synthesis 
approach is of sure the most stimulating for the chemist. Indeed, bottom-up approaches, 
starting from single atoms and molecules have more affinity with chemistry and 
molecular biology, as much of chemistry already implicates the control of 
nanodimensional objects or the self-assembly of molecules into larger structures. 
 
As main advantages, bottom-up techniques display a wide variety of preparation 
methods, they allow a good control onto scale dimension, even from atomic or 
molecular level, and they are not as expensive as top-down approaches. Nevertheless, 
the advent of pre-programmed self-assembling of arbitrarily large systems, with 
complexity comparable to that found in natural systems, is still a challenge. 
 
In the following chapters, the attention will be focused only onto inorganic nanosized 
structures and the nanosystems will be defined and classified according to the 
hierarchical order of dimensionality: zero-dimensional systems, including spherical, 
pseudo-spherical or point-like objects; one-dimensional systems, in which the extension 
over one dimension is predominant over the other two, such as nanorods, nanowires, 
nanofibers, nanotubes; two-dimensional systems, such as flat or membrane-like 
materials, nanosheets and nanoscale discs; three-dimensional systems, both crystalline 
and amorphous nanostructures as well as porous and non-porous materials, which 
exhibit nanometric features, even if they extend over the three dimensions. 
 
- 
- 
- 
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