
UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

RHEOLOGY - Vol. I - Linear Viscoelasticity - Críspulo Gallegos and Francisco J. Martínez Boza 

 
 

©Encyclopedia of Life Support Systems (EOLSS) 

LINEAR VISCOELASTICITY 
 
Críspulo Gallegos and Francisco J. Martínez Boza 
Complex Fluid Engineering Laboratory. Departamento de Ingeniería Química. 
University of Huelva. 21071 Huelva, Spain 
 
Keywords: linear viscoelasticity, superposition principle, stress relaxation, creep, 
oscillatory shear, relaxation spectrum    
 
Contents 
 
1. Introduction 
2. The Boltzmann superposition principle  
3. Derivative models for the relaxation modulus 
4. Relaxation spectrum 
5. Small strain material functions 
5.1. Stress relaxation 
5.2. Creep 
5.3. Small Amplitude Oscillatory Shear 
6. Calculations of the linear relaxation and retardation spectra from experimental linear 
viscoelasticity functions  
6.1. Calculation of the Linear Relaxation and Retardation Spectra from G(t) and J(t) 
6.1.1. Transform Inversion Methods 
6.1.2. The Method of Ferry and Williams 
6.2. Calculation of Relaxation and Retardation Spectra from Harmonic Responses 
6.2.1. Transform Inversion Methods 
6.2.2. The Method of Ferry and Williams 
6.3. Least Squares Method 
6.4. Regularization Method 
6.4.1. Calculation of H(λ) from G´(ω) 
6.4.2. Calculation of H(λ) from G˝(ω) 
6.4.3. Calculation of L(τ) from J(t) 
Glossary 
Bibliography 
Biographical Sketches 
 
Summary  
 
Viscoelastic materials possess both viscous and elastic properties in varying degrees. 
For a viscoelastic material, internal stresses are a function not only of the instantaneous 
deformation, but also depend on the whole past history of deformation. For real 
materials, the most recent past history has much more influence. Linear viscoelasticity 
is the simplest response of a viscoelastic material. If a material is submitted to 
deformations or stresses small enough so that its rheological functions do not depend on 
the value of the deformation or stress, the material response is said to be in the linear 
viscoelasticity range. This chapter reviews the Boltzmann superposition principle, the 
constitutive equations for linear viscoelasticity (mainly in simple shear), the use of 
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mechanical models analogies to describe the linear viscoelasticity behavior of real 
materials, the description of experimental tests in shear necessary to obtain the different 
small strain material functions, and the methods to calculate the linear relaxation and 
retardation spectra of viscoelastic materials.      
 
1. Introduction 
 
As can be deduced from its name, viscoelastic materials possess both viscous and 
elastic properties in varying degrees. For a viscoelastic material, internal stresses are a 
function not only of the instantaneous deformation, but also depend on the whole past 
history of deformation. For real materials, the most recent past history has much more 
influence. This is the reason why these materials may be described as having fading 
memory. Linear viscoelasticity is the simplest response of a viscoelastic material. When 
a material is deformed, thermodynamic forces immediately begin to operate to restore 
the minimum-energy state. Movement from the rest state represents a storage of energy. 
This type of energy is the origin of elasticity on many different materials, i.e. polymer 
solutions, polymer melts, concentrated suspensions, concentrated emulsions, asphalts, 
lubricating greases, etc. If a material is submitted to deformations or stresses small 
enough so that its rheological functions do not depend on the value of the deformation 
or stress, the material response is said to be in the linear viscoelasticity range.   
 
2. The Boltzmann Superposition Principle 
 
Consider the function ( )tγ  as representative of some cause (shear strain) acting on a 
given material, and the shear stress, ( )tσ  , the effect resulting from this cause. A 
variation in shear strain, occurring at time 1t  will produce a corresponding effect at 
some time later, t , which can be expressed as: 
 

)()()( 11 tttGt δγσ −=  (1)     
        

1( - )G t t is an influence function, also known as relaxation function, or relaxation 
modulus (with a physical significance that will be discussed later on), which is a 
property of the material and relates cause and effect. It is a function of the time delay 
between cause and effect. This influence function is a decreasing function of 1( - )t t , 
representing a “fading memory”, and is independent of the strain amplitude (Dealy, 
J.M. and Wissbrun, K.F., 1995). 
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Figure 1. Series of strain increments applied on a given material (adapted from Dealy, 
J.M. and Wissbrun, K.F. (1995) “Melt rheology and its role in plastic processing”. 

Chapman & Hall, London (UK). 
 
To calculate the stress resulting from a strain introduced at time 2t , it is assumed that 
the incremental response of the material to this second strain is independent of the one 
previously introduced: 
 

)()()()()( 2211 tttGtttGt δγδγσ −+−=  (2) 
 
A series of N changes in the shear strain, each occurring at a different time (see Figure 
1), will all contribute cumulatively to the stress at some later time. Thus: 
 

)()()(
1 ii

N

i
tttGt δγσ −Σ=

=
 (3) 

 
If the change in strain occurs continuously, the sum may be replaced by an integral: 
 

∫
∞−

−=
t

tdttGt )'()'()( γσ  (4) 

 
which can also be written as: 
 

')'()'()(
.

dttttGt
t

∫
∞−

−= γσ  (5) 

 
The lower limit implies that all the strains that have occurred in the past will contribute 
to the effect at the present time, t . However, for a material with a fading memory, there 
will be a time prior to which all the strains which have previously occurred will have a 
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negligible contribution. Thus, an experiment generally starts at some time ( 0t = ) when 
the material is free of stresses. In this case: 
 

∫ −=
t

tdttGt
0

)'()'()( γσ  (6) 

 
All these linear constitutive equations are only appropriate to describe the behavior of 
materials submitted to shear deformations. However, they can be generalized for any 
type of deformation that can be applied on the material. Thus, if the sear strain is 
replaced by the strain tensor, and the shear stress by the stress tensor, different forms of 
the Boltzmann superposition principle are obtained: 
 

∫
∞−

−=
t

ijij tdttGt )'()'()( γσ  (7) 

 
or 
 

')'()'()(
.

dttttGt
t

ijij ∫
∞−

−= γσ  (8) 

 
3. Derivative Models for the Relaxation Modulus 
 
As can be deduced from the previous description, the linear response of a given material 
to any type of deformation can be predicted if the relaxation modulus has been 
experimentally obtained. However, it is previously necessary to correlate the evolution 
of the linear relaxation modulus with time. 
 
A classical approach to the description of the linear viscoelastic behavior of real 
materials which exhibit combined viscous and elastic properties is based upon an 
analogy with the response of combinations of certain mechanical elements (a spring for 
elasticity, and a dashpot for viscosity).  Such models are, of course, idealized and purely 
hypothetical, and are useful for representing the behavior of real materials only to the 
extent that the observed response of the real material can be approximated by that of the 
model. 
 
The simplest models are the Maxwell model, which can be constructed as a 
combination of one spring and one dashpot in series (see Figure 2), and the Voigt or 
Kelvin model (see Figure 3), which is represented by one spring and one dashpot in 
parallel. 
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Figure 2. Mechanical analog of the Maxwell model 
 

 
 

Figure 3. Mechanical analog of the Kelvin-Voigt model 
 

For the Maxwell model, the resulting equation that describes the time dependence of the 
shear linear relaxation modulus is as follows: 
 

[ ])/exp()( 0 λtGtG −=  (9) 
 
and the linear constitutive equation: 
 

[ ]{ } ')'(/)'(exp)(
.

0 dttttGt
t

ijij ∫
∞−

−−= γλσ  (10)  

 
It can be deduced that this model predicts an initial purely elastic response of the 
material, and a further exponential decay with time, reaching 37% of its initial value at 
a time equal toλ . The material property λ  is a characteristic time constant of the 
material, and its called the relaxation time. 
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Figure 4. Mechanical analog of the Burgers model 
 
There are a large number of models that can be formulated by combining different 
numbers of springs and dashpots together in diverse ways, aiming to simulate the 
evolution of the linear relaxation modulus of real materials. Thus, the Burgers model is 
a combination of a Maxwell element and a Voigt element in series (see Figure 4). 
However, one of the most useful for viscoelastic fluids is the generalized Maxwell 
model (see Figure 5), which, in essence, assumes that, instead of a single relaxation 
time, the fluid has a response characteristic of a whole series, or distribution, of 
relaxation times. 

 

 
 

Figure 5. Mechanical analog of the generalized Maxwell model 
 
This model can be made to fit data for many real materials if a suitable distribution of 
relaxation times is used. Thus, between 5 and 10 Maxwell’s elements are usually 
sufficient to fit experimental data reasonably well. Such a set of values is called a 
“discrete spectrum” of relaxation times of the material. In this case, the shear relaxation 
modulus is represented by the following equation:  
 

[ ])/exp()(
1 ii

N

i
tGtG λ−Σ=

=
 (11) 

 
whilst the linear constitutive equation can be written as: 
 

[ ]{ } ')'(/)'(exp)(
.

dttttGt
t

ijkkij ∫
∞−

−−Σ= γλσ  (12) 
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4. Relaxation Spectrum 
 
Another approach to the quantification of the linear relaxation modulus is the use of a 
continuous relaxation spectrum ( )H λ . Using it provides a continuous function of 
relaxation time, λ , rather than a discrete set. Thus, ( )G t can be represented in terms of 
a continuous function, ( )F λ , as follows: 
 

[ ]∫
∞

−=
0

/exp()()( λλλ dtFtG  (13) 

 
where ( )F dλ λ  is the relaxation modulus corresponding to a relaxation time comprised 
between λ  and dλ λ+ . 
 
An alternative distribution function, ( )H λ , may be used in place of ( )F λ , defined as: 
 

)()( λλλ FH =  (14) 
 
and 
 

λλ FdHd =)ln(  (15) 
 
The relaxation modulus is now defined as: 
 

[ ] )(ln/exp()()( ∫
∞

∞−

−= λλλ dtHtG  (16) 

 
There are several methods to determine the linear relaxation spectrum of viscoelastic 
materials from experimental data of different linear viscoelasticity functions. 
Consequently, it is necessary to establish the usual experimental tests for the material 
linear viscoelasticity characterization, and to define the corresponding linear 
viscoelasticity functions that are derived from those tests.    
 
5. Small Strain Material Functions 
 
A number of small strain experiments are used in rheology. Some of the more common 
techniques are stress relaxation, creep, and sinusoidal oscillations. In the linear 
viscoelastic region, all small strain experiments must be related to one another through 

( )G t , or through ( )H λ . Different experimental methods are used because they may be 
more convenient or better suited for a particular material or because they provide data 
over a particular time range. Furthermore, it is often not easy to transform results from 
one type of linear viscoelastic experiment to another, and, consequently, several 
functions are often measured.   
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