HIGH PRESSURE RHEOLOGY

Francisco J. Martínez Boza and Críspulo Gallegos
Complex Fluid Engineering Laboratory. Departamento de Ingeniería Química
University of Huelva, Huelva, Spain.

Keywords: High pressure, rheology, viscosity, rheometry

Contents

1. Introduction
2. Experimental techniques for high-pressure rheology
 2.1. Viscometers and Rheometers for High Pressure Rheology
 2.2. High-pressure Equipments
3. Models for high-pressure rheology
 3.1. Empirical Models
 3.2. Free Volume Models
 3.3. Friction Theory Models
4. High-pressure rheology applications
Glossary
Bibliography
Biographical Sketches

Summary

High-pressure rheology plays an important role in many areas of science and technology. For instance, the accurate determination of the pressure-temperature-viscosity relationship is very important in lubrication science and in the polymer industry. In spite of its importance, the influence that pressure exerts on materials mechanical properties has been less studied than the influence of temperature, mainly due to the well-known difficulty to develop reliable rheological equipment for conducting rheological tests under pressure. High-pressure rheology combines conventional experimental techniques on rheometry with those specific for high-pressure analysis. The pressure-temperature behavior of Newtonian simple materials, such as organic low molecular weight liquids, is well described by simple expressions of viscosity as a function of pressure and temperature. For time-dependent non-Newtonian materials, such as complex mixtures, suspensions, emulsions, high molecular weight polymer solutions and melts, etc., the effect of pressure on the rheological behavior is much more complex. Consequently, more sophisticated analysis, such as, for instance, reduced variables and time-pressure-temperature superposition methods, are necessary.

1. Introduction

High-pressure rheology plays an important role in many areas of science and technology. For instance, the accurate determination of the pressure-temperature-viscosity relationship is very important in lubrication science, because the liquid lubricant is submitted to high pressures, and large shear rates, over a wide range of
temperature. In the polymer industry, processing parameters such as pressure and temperature are essential in order to obtain the desired quality in products made by extrusion, injection molding, compression molding, etc.

The effect of pressure on viscosity is quite small for most organic liquids. Generally, the viscosity approximately doubles its value when the pressure is increased from atmospheric pressure to 100 MPa. On the contrary, for lubricating liquids, pressures of the order of 1 GPa in the point of contact may increase the viscosity of the lubricant in several decades. For polymer injection molding, pressures of about 0.1 GPa may increase between 10-100 times the viscosity of the melts, depending on polymer molecular weight. It is worth pointing out that water, at ambient temperature, is an exception to the general evolution of viscosity with pressure. Thus, water viscosity decreases as pressure increases up to about 0.1 GPa (Barnes, 2000).

In spite of the importance of pressure in many processes and phenomena, the influence that pressure exerts on materials mechanical properties has been less studied than the influence of temperature, mainly due to the well-known difficulty to develop reliable rheological equipments for conducting rheological tests under pressure. Simple materials, such as organic low molecular weight liquids, are well characterized by its Newtonian viscosity. Their pressure-temperature behavior is well described by simple expressions of viscosity as a function of pressure and temperature. For time-dependent non-Newtonian materials, such as complex mixtures, suspensions, emulsions, high molecular weight polymer solutions and melts, etc., the effect of pressure on the rheological behavior is much more complex. Consequently, more sophisticated analysis, such as, for instance, reduced variables and time-pressure-temperature superposition methods, are necessary.

2. Experimental Techniques for High-pressure Rheology

High-pressure rheology combines conventional experimental techniques on rheometry with those specific for high-pressure analysis. Working under a pressurized medium implies a deep knowledge of high-pressure methods. Thus, for instance, for the piston-cylinder system, the classical theory of elastic and plastic deformation of the cylinder is of paramount importance in order to give an insight into the deformation and stresses in high-pressure cells. The effect of temperature on high-pressure equipments must be also taken into account, since high-pressure rheology studies may be accomplished in the low and/or high temperature regions. Finally, reliable techniques for detecting pressure values, transmitted torque, and measured deformation in systems that operate at high pressure are necessary in order to obtain useful rheological parameters.

TO ACCESS ALL THE 24 PAGES OF THIS CHAPTER, Visit: http://www.eolss.net/Eolss-sampleAllChapter.aspx
Bibliography

Bair, S.S., (2007) High pressure rheology for quantitative elastohydrodynamics, Elsevier, Amsterdam. [An excellent comprehensive text on high-pressure rheology that covers both theoretical and experimental approaches].

©Encyclopedia of Life Support Systems (EOLSS)

Hersey, M.D., (1916) “The Theory of the Torsion and the Rolling Ball Viscometers and their Use in Measuring the Effect of Pressure on Viscosity”, J. Washington Acad. Sci., 6 525–530. [In this study, an electrical method is used at both ends of a falling body viscometer for detecting the position of the body].

to polymers blends].

Piermarini, G.J., Forman, R.A. and Block, S., (1978) “Viscosity Measurements in the Diamond Anvil...

3707. [Temperature dependence of the relaxation mechanics for different materials].

Biographical Sketches

Francisco J. Martínez Boza is Professor of Chemical Engineering at the University of Huelva (Spain). He received his PhD from the University of Seville in 1996. From 1996-2001 he was Assistant Professor at the University of Huelva. His research interests lie in high-pressure rheology and processing of complex materials such as bituminous mixtures, synthetic binders, heavy fuels, lubricants, etc. Researcher in more than 25 public and private research projects, he is author of more than 35 papers in scientific journals and books, more than 40 contributions to national and international conferences, and co-inventor in 4 patents. Prof. Martínez is a member of the “Real Sociedad Española de Física y Química” and the Spanish Group of Rheology. He was a member of the Organizing Committee of the meeting “Eurorheo 2002-Joint Meeting of British, Italian, Portuguese, and Spanish Rheologists”, and co-editor of the book “Progress in Rheology: Theory and Applications”.

Críspulo Gallegos is Professor of Chemical Engineering and Chair at the University of Huelva (Spain). He received his PhD from the University of Seville in 1982. From 1985-1997 he was Professor of Chemical Engineering at the University of Seville (Spain). He has also been Visiting Professor at several universities, including the University of Cambridge (UK) and Université Laval (Canada). His research interests lie in rheology, microstructure and processing of complex fluids. Professor Gallegos is the author of more than 200 papers in scientific journals and books, and author of more than 200 contributions to international and national conferences. He is co-inventor in 8 patents. He is member of the Editorial Boards of different scientific journals, Dr. Gallegos has been Scientific Coordinator of the Food Technology Area of the National Agency for Evaluation and Prospective of the Spanish Ministry for Science and Technology (2001-2004). Since 2009, he is President of the European Society of Rheology.