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Summary 
 
This chapter gives a survey on the rheology of multiphase systems. The topic is of the 
utmost practical relevance, as flows of multiphase systems, e.g., solids in liquid, liquid-
liquid or gas-liquid systems are encountered in a very wide range of applications. It is 
then evident the difficult task of gathering together sparse results while also unifying 
concepts and interpretations. We were thus forced to make a severe selection of main 
topics, and to leave out many arguments which, though interesting, appear to be of less 
general relevance. We are fully aware that such a selection is certainly biased from our 
own interests and fields of expertise; although we apologize for this anisotropic point of 
view, we believe this is unavoidable in any review chapter.  
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The chapter opens with a section devoted to suspensions of solids in liquids. In order to 
maintain the discussion as simple as possible, we consider the case of identical solid 
spheres as inclusions, by neglecting inertia and buoyancy. The section progresses from 
dilute to “dense” suspensions. The second section reports on the rheology of liquid-
liquid suspensions, i.e., emulsions. The relevance of the dynamic nature of the interface 
is stressed throughout, from the disperse to the co-continuous morphology. 
Deformability of the interface, together with breakup and coalescence phenomena play 
the central role under flow. The chapter then closes with a rather brief introduction to 
foams, i.e., the case of gas-liquid systems at very high gas fraction.  
 
Whenever theoretical analysis can be profitably used to describe experimental 
evidences, it has been included in some detail. The reader will notice how theoretical 
understanding progressively fades out while reaching the end of the chapter, somehow 
reflecting both the age of  the subjects here addressed, and their intrinsic difficulties.  
Although the topics covered in this chapter are widespread, a unifying tool is often used 
(if not explicitly reported) for the rheological description, namely, the celebrated stress 
averaging procedure formalized by Batchelor (1970). Useful limiting behaviors and 
scaling arguments are presented as well. In the cases where no clear cut understanding 
can be found, phenomenological arguments and practical rules of thumb are reported to 
guide the reader. 
 
1. Suspensions 
 
A suspension consists of discrete particles dispersed in a liquid matrix. As already 
mentioned in the Introduction, we will mainly consider monodisperse rigid spheres, in 
the inertialess case and buoyancy free. Even within these limitations, the multiphase 
system behavior is affected by several factors. Still at the level of solid/liquid 
interactions, surface properties may play a crucial role. For example, 
hydrophilic/hydrophobic particle characteristics with respect to the suspending liquid, 
surface charge density related to the matrix pH, possible adsorption of species (or even 
the presence of surfactants), and chemical stability of the particles can be of importance. 
Also particle/particle interactions, e. g., repulsions or attractions leading to flocculation, 
certainly have a profound influence on the suspension behavior. In what follows, 
however, we will present the rheology of the overall suspension as determined 
essentially by hydrodynamics, to keep the discussion as simple as possible.  
 
1.1. Dilute Systems 
 
Dilute systems are usually regarded as the simplest system to understand the effect of 
fillers on hydrodynamics. A suspension is defined to be dilute when, loosely speaking, 
particles do not interact at all, and hence the only effect of the addition of particles 
results in local distortions of the flow field. Since such distortions are completely 
unrelated with each other, the size of particles (and even their size distribution, if any) 
does not play any role, provided of course that sample size is much larger than particle 
dimensions. The undisturbed flow field is supposedly recovered at some distance from 
the inclusion. The region interested by distortion due to the particle has a characteristic 
dimension that scales with the only available length scale, i. e., the particle size. Thus, 
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the actual particle dimension is irrelevant, and all macroscopic observables in the dilute 
case will only depend on the (low) solid volume fraction, φ, of the suspension.  
 
Some caution is required to proceed, however, as small volume fractions do not 
necessarily imply diluteness in the above stated sense. Indeed, a simple estimate of 
“particle crowding” in terms of volume fraction in the absence of any structuring of the 
suspension can be derived from a purely geometrical argument for the simple case of 
equally sized spherical inclusions. By calling h be the distance among first neighbors, 
and R the sphere radius, for the hypothetical case of simple cubic arrangement it is: 
 

1
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h
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π
φ

⎡ ⎤
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                                                                                                                  (1.1) 

Equation (1.1) shows that h  diverges for vanishing volume fraction, as it should be. 
Furthermore, the maximum packing fraction for simple cubic arrangement is found 
at 0h = , namely m / 6 0.52φ π= ∼ . By inspection, one can note that even at low volume 
fractions, /h R can be a small number. For example, for 0.1φ = , it is / 1.46h R = , i.e., 
particles are less than one-particle diameter apart. The volume fraction for which 
particles are exactly one-diameter apart is as low as 0.06φ = . Similar conclusions hold 
in the more realistic case of so-called “randomly packed” spheres (Truskett et al. 2000). 
For such arrangement, Woodcock (1985) estimates that: 
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In this case, the maximum packing fraction is m 2 / 0.64φ π= ∼ , and the condition for 
having spheres one-diameter apart is 0.03φ = , even more restrictive than for the 
crystalline cubic arrangement. It is then apparent that dilute conditions in the sense of 
isolated particles can be practically attained at extremely low volume fractions (infinite 
dilution limit). Such a dilution might be hardly achievable in actual experiments, and, 
correspondingly, macroscopic effects might become barely measurable in such 
conditions. By increasing the volume fraction, hydrodynamic interactions between 
particles will become significant, and will in fact play a key role in semi dilute 
suspensions.  
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Figure 1. Packing functions: Solid line represents Eq.(1.1), dashed line represents 
Eq. (1.2), both for R=1μm. Shaded area indicates length scale range of colloidal forces. 

 
To roughly characterize the influence of the other possible particle interactions (electric, 
interfacial etc.) of colloidal origin, one can still refer to Eqs.(1.1) and  (1.2). Figure 1 
shows the characteristic distance calculated from Eqs. (1.1) and  (1.2) for spherical 
particles with R=1μm. The shaded area in the figure represents the typical scale length 
of colloidal forces, namely, around a few nanometers. It is thus confirmed that, for 
nonBrownian particles, colloidal forces are only relevant close to maximum packing. It 
can be concluded that one can identify three main concentration regions: 1) Infinite 
dilution, i.e., single particle effects; 2) Semidilute systems, with hydrodynamic 
interactions only; 3) Concentrated systems, where also colloidal interactions should be 
accounted for. 
 
Under highly dilute conditions, rigorous hydrodynamic predictions are available, which 
can be used to determine rheological properties of the suspension as a whole. Indeed, in 
the infinite dilution limit single particle behavior only is relevant, and predictions of 
bulk properties can then be achieved through proper averaging. The phrasing 
“suspension “as a whole” and “bulk properties” point to the simple concept that the 
suspension, although microscopically a two-phase system, can be envisaged instead as a 
homogeneous liquid when observed at a macroscopic scale, where “proper averaging” 
cancels fine local details. Quite naturally, two different characteristic length scales have 
already emerged in the above discussion on concentration regimes, i.e., the sphere 
radius R , and the intersphere distance h : diluteness implies R h . For the 
“macroscopic scale” of the averaging, L , it clearly must be L h . In many cases, L is 
a linear dimension of the apparatus in which the rheological experiments are performed, 
for example the gap in a Couette cell. In view of the ordering R h L of the length 
scales, the averaging over L  implies the contribution of many particles, and each 
particle behaves individually. Thus, in dilute conditions bulk properties are averaging of 
single-particle results.  
 
The classical result of Einstein (1906, 1911) on the viscosity of a dilute suspension of 
buouancy-free rigid spheres can then be attained as follows. A single sphere is 
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immersed in an incompressible Newtonian liquid for which the stress tensor T is: 
 

( )T
0 02p pη η= − + ∇ + ∇ = −T I v v I + D                                                                           (1.3) 

 
where p is the pressure, 0η is the viscosity, I is the unit tensor, v is the local velocity 
field, and D is the rate of deformation tensor. A linear flow field is imposed far away 
from the sphere (i.e., with a constant velocity gradient “at infinity”), and the full 
hydrodynamic problem is solved (in the absence of inertia), with no-slip conditions at 
the sphere surface. Once this single particle problem is solved, the local stress fields are 
available and can be used in an averaging procedure involving both the liquid and the 
sphere. In principle, to perform the averaging of the stress, also the stress inside the 
particle would be required, which is undetermined, however, because of the rigidity 
constraint. To overcome this difficulty, the volume integral over the sphere is 
transformed to a surface integral over the sphere surface SA , where local stresses are 
instead known. Summing over the n spheres contained in the averaging volume 3L , one 
eventually obtains the average (i.e., bulk) deviatoric stress: 
 

s

0 32
A

n dA
L

η= + ⋅∫T D T nn                                                                                                     (1.4) 

 
with n being the unit outward normal to the sphere surface, and the overbar denotes 3L  
volume averaging. Upon integration, the famous Einstein formula for the bulk viscosity 
of the suspension is finally obtained: 
 

0
51
2

η η φ⎛ ⎞= +⎜ ⎟
⎝ ⎠

                                                                                                                    (1.5) 

 

the volume fraction being of course 
3

34
3
Rn Lπφ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
. In passing, notice that no 

effects other than such viscosity modification occurs, i.e., the suspension as a whole 
remains a Newtonian liquid for which the intensity of the flow field does not affect the 
viscosity. This simplicity is due to diluteness. Indeed, as it will be shown in a 
subsequent section, concentrated suspensions in a Newtonian medium show an overall 
non-Newtonian behavior. 
 
Equation (1.5) is a very robust result. It is worth noting that Einstein original derivation 
was quite different from that followed here, as it was based on a calculation of 
dissipation in the single sphere problem. On the other hand, the deduction of the 
constitutive relation (Eq.(1.5)) by averaging can be made in several ways. Here, a 
volume averaging was chosen (e. g., Landau and Lifshitz, 1958; Batchelor, 1970). Other 
choices refer to ensemble averaging or homogenization techniques together with 
asymptotic analysis (Brenner, 1972; Hinch, 1977). Convergence of all these methods to 
the same result is then certainly remarkable. Another interesting feature of Eq.(1.5) is 
that it is applicable to Brownian suspensions of spheres as well. Once again, this feature 
was indeed exploited with a great understatement by Einstein himself to derive his 
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famous relationship for the diffusivity in suspensions or solutions. In fact, Eq.(1.5) was 
later adopted in the procedure for obtaining molecular weight of polymers through 
viscosity measurements of their dilute solutions (e.g., Flory, 1953). 
 
From a purely rheological point of view the Einstein equation provides a limiting 
behavior. Dilute suspension theory indeed covers the range below at most 5-10% 
volume fraction. Nearly all systems of practical interest, however, are well beyond that 
range, hence utility of Eq.(1.5) is limited. The experimental assessment of the validity 
of the Einstein equation is not a trivial issue. When dealing with large spherical particles 
particle inertia, settling, and migration can cause serious problems. In the case of 
submicron particles, preparation of homogeneous samples could be difficult for 
agglomeration due to colloidal forces. Careful experiments carried out in the semidilute 
regime (to be examined later on, see Figure 3) show the correct Einstein limiting 
behavior when approaching very low dilution. 
 
The Einstein prediction applies to “hard spheres”, while the case of “soft spheres” has to 
be considered when either one or more of the following conditions are encountered: (a) 
a significant electrical double layer is present on the particle surface; (b) the thickness of 
the adsorbed stabilizing layer (surfactant layer) is significant with respect to particle 
size; (c) the solvation or hydration of particles is significant (solvation or hydration 
refers to a phenomenon whereby the continuous-phase liquid becomes immobilized at 
the particle surface). The presence of an electrical double layer on the surface of the 
particles results in an increase of the viscosity. This phenomenon is referred to as 
electroviscous effect (Krieger, 1972). In the case of dilute suspensions, the 
electroviscous effect is associated with the distortion of electrical double layer from 
spherical symmetry due to the shear field. The stresses generated by asymmetric electric 
fields around the particle tend to restore the symmetry of double layer, thereby opposing 
the flow. This results in extra dissipation of energy, hence, an increase in viscosity. In 
the case (b) or (c) listed above, the presence of a thick adsorbed layer of surfactant or 
continuous-phase liquid at the particle surface also results in an increase in the viscosity 
of the dispersion. 
 
The effects of viscoelasticity of the suspending fluid are relevant in many systems of 
practical interest, e.g., filled polymer melts or filled worm-like surfactant systems 
(“living polymers”). Of course, a wealth of non-Newtonian fluids encompassing a wide 
range of rheological properties exists, thus preventing a simple unifying description of 
their constitutive equations. Thus, even in the simplest case of dilute suspension of 
spherical particles, general common features are hardly found. To maintain the highest 
possible generality, the so-called "Second Order Fluid" (SOF) constitutive equation can 
be considered for the suspending fluid. The SOF stress tensor is the asymptote of an 
extremely ample class of viscoelastic constitutive equations, in the limiting conditions 
of slow and slowly varying flows (Truesdell and Noll, 1965). It is: 
 

0 0 02η α β= + + ⋅T D A D D                                                                                                     (1.6) 

 
where A is the second Rivlin-Ericksen tensor, and the coefficients 0α  and 0β are 
constant constitutive parameters that account for elastic properties of the fluid. These 
coefficients are linked to the first and second normal stress coefficients in shear flow, 
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1Ψ and 2Ψ  respectively, through the well known relationships: 

0 1 0 1 2/ 2,   4( )α β= −Ψ = Ψ +Ψ . The SOF constitutive equation is the most general 
properly invariant stress tensor quadratic in the velocity gradient. 
 
Some analytical results for dilute suspensions have been presented in the past based on 
Eq.(1.6), and on proper averaging of the stress field from single-sphere results, akin to 
that of Eq. (1.4). Because of the mathematical complexities of the calculations, 
however, those results were at variance with each other. Quite recently, the analytic 
problem has been re-tackled again and convergence (though not yet identity) in the 
obtained formulae has been gained (Greco et al, 2005, 2007; Koch and Subramanian 
2006). Non-Brownian rigid spheres in a SOF is then shown to be itself a SOF, with the 
overall elastic constitutive coefficient α  given by 
 

0
51
2

α α φ⎛ ⎞= +⎜ ⎟
⎝ ⎠

                                                                                                                     (1.7) 

 
and the viscosity always given by Eq.(1.5).The β  coefficient is slightly different in 
Greco et al. (2005, 2007) and Koch and Subramanian (2006). Even more than for the 
Einstein equation, the experimental assessment of the validity of Eq. (1.7) is not an easy 
task. Indeed, as mentioned above, coefficients α  and β   are linked to normal stresses, 
and the error on normal stress difference measurements is often substantial. A peculiar 
prediction from these recent calculations should be signaled, however: The presence of 
suspended spheres should lead to the appearance of a second normal stress difference 

2N  in shear even in fluids which, when unfilled, do not present such normal stresses.  
 
Another nice conclusion from both Eqs. (1.5) and (1.7), amenable to ready validation 
from steady shear experiments, is obtained by looking at normal stress data in terms of 
the overall tangential shear stress xyT , rather than in terms of the imposed shear rate, 
following the original suggestion by Highgate and Whorlow (1970). By considering, for 
example, the first normal stress difference 1N , it is found: 
 

20
1 2

0

52 1
2 xyN Tα φ

η
⎛ ⎞= − −⎜ ⎟
⎝ ⎠

                                                                                                         (1.8) 

 
Thus, at any fixed shear stress, the first normal stress difference decreases with φ  
(recall that 0α is a negative quantity). This feature is in qualitative agreement with 
experimental data, although those data are regularly taken at volume fractions not 
actually in the dilute regime (see Figure 6). This kind of success is in fact a rather 
typical feature of “infinite dilution” results, namely, that the predicted trends from 
single-particle calculations turn out (somehow surprisingly) to be qualitatively correct 
even well beyond the 0φ →  limit.  
 
Finally, by using Eq.(1.6) for the suspending liquid, also the linear viscoelastic behavior 
of the nonBrownian dilute suspension can be calculated, e.g., the response of the 
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suspension to small shearing oscillations. Results do in fact coincide with those 
obtained as a special case (for solid particles) from the well-known Palierne theory for 
emulsions (see next section, Eqs.(2.8)). The storage and loss moduli of the suspension 
are always increased by filler addition, and the effect is the same for G′ and G′′ , 

through the shift factor 51
2

φ⎛ ⎞+⎜ ⎟
⎝ ⎠

 (see Eqs.(1.5),(1.7)). Also in this case, the 

experimental assessment of such prediction is not easily made, because of the high 
dilution in principle required for the suspension. Finite dilution results, up to high 
concentration, show a vertical shift of both moduli, but the effect of the filler is not 
always the same for G′  and G′′  (Barnes, 2003). Quite often, other effects are observed, 
with the appearance of a low-frequency plateau in the storage modulus, usually from a 
pseudo-network arrangement between flocs or chains of particles.  
 
Abandoning the SOF limit for the suspending liquid, non-Newtonian rheological 
properties depending on flow rate and/or time have to be described such as, for 
example, the well-known “thinning” of viscosity or normal stresses with the shear rate, 
or the “strain-rate hardening” during time evolution of the elongational viscosity. Many 
non-Newtonian constitutive equations for the stress tensor have been proposed to this 
aim, all of them containing a characteristic relaxation time τ  (at least) as a yardstick of 
the slowness in the time response of the given fluid. In nondimensional terms, this leads 
to the introduction of the Deborah number De , as the ratio between the characteristic 
time of the material and that of the imposed flow. In shear, for example, it is De  τ= γ , 
with γ  the shear rate. Notice that, in fact, for the Newtonian suspending fluid it 
is 0De = , whereas the asymptotic SOF is linear in De , with τ α η0 0= − . 
 
All the rheological phenomena of a dilute suspension in a non-Newtonian fluid become 
then in principle dependent on De , as well as on φ , and diverse nonlinear behavior is 
shown with different suspending fluids. For dilute suspensions in steady shear, 
experiments generally show (Han, 1981; Metzner, 1985; Barnes, 2003) that the 
viscosity, the first and (magnitude of) the second normal stress differences all increase 
with respect to the corresponding quantities for the pure suspending fluid, at any De . In 
general, it is also found that a simple vertical shift of the flow curves will not describe 
the effect of added particles at all shear rates. In other words, with increasing De , the 
difference between suspension and pure fluid rheological quantities progressively 
decreases. As an example, Figure 2 shows the viscosity of a suspension as a function of 
the shear rate, with the volume fraction of beads increasing, even well beyond the dilute 
limit.  
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Figure 2. Viscosity-shear rate curves for glass beads suspended in polyisobutylene 
decalin solutions. (Reproduced from Nicodemo et al. 1974, with permission) 

 
The latter observation can perhaps be rationalized as follows. For a suspension, the 
undisturbed shear flow in a cone-and-plate apparatus, say, with a constant shear rate 
changes to a situation where locally, in the neighborhood of a particle, there is an 
increase of the shear rate. (The obvious appearance of extensional components in the 
local flow around the particle is here neglected, for simplicity of argument.) As a 
consequence, for a thinning non-Newtonian suspending liquid, the local viscosity (or 
normal stresses) will be lower than that pertaining to the unfilled liquid at the same 
externally imposed shear rate, the more so the larger De . Such a thinning-induced 
decrease in the local (and hence in the overall) viscosity of the continuous phase 
somehow counteracts the increase in the suspension viscosity due to the presence of 
particles, and the effect of added particles is therefore smaller at high De , as observed. 
At present, no calculation of such a feature is however available in the literature, not 
even in the dilute limit (order φ ). 
 
In the case of elongational flow, essentially no experiments are available for dilute 
suspensions of spheres. The only available theoretical predictions (Greco et al. 2005; 
Koch and Subramanian, 2006), for the uniaxial elongational viscosity of a Newtonian 
and a SOF non-Brownian suspension, show quite small effects of non-Newtonianness 
on the Trouton ratio. Large effects of added particles on the elongational behavior of the 
suspension are observed instead for nondilute suspensions with non-Newtonian 
suspending fluids (see next section), or for rather dilute suspensions with elongated 
particles.  
 
In the latter case, the effect of nonsphericity might be evaluated by considering uniaxial 
ellipsoidal particles, i.e., ellipsoids of revolution (semi-axes ,a b andb ). The aspect ratio 
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of such particle is /r a b= . For 1r > , this is a prolate ellipsoid (rods) with the two equal 
axes being shorter than the larger axis, while for 1r < this is an oblate ellipsoid (disks) 
with the two equal axes being longer. The nonspherical particle can be oriented by the 
flow field. In the case of extensional flows the anisotropic particles reach a steady state 
conditions: in the case of rod-like particles the major axis orients in the stretching 
direction, while in the case of disk-like particle the axis of symmetry orient along the 
compression direction. The extensional viscosity is then given by (see e.g., Petrie 1999): 
 

( )
2

el 0

el 0

1 1
3 log 2 3 2

101 1
3

r r
r

r
r

η η φ

η η φ
π

⎡ ⎤
= +⎢ ⎥−⎣ ⎦

⎡ ⎤= +⎢ ⎥⎣ ⎦

                                                                               (1.9) 

 
Comparison of Eq.(1.9) with the case of spherical inclusions shows that a small amount 
of anisotropic particles gives rise to a strong increase of the extensional viscosity. 
 
 
- 
- 
- 
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Polymer 37, 3745-3747. [The elongational viscosity of a neat polymer and the same polymer filled with 
glass beads is experimentally measured showing the reduction  of  the strain-hardening in presence of 
glass beads with increasing bead contents]. 

Koch D. L., Subramanian G. (2006). The stress in a dilute suspension of spheres suspended in a second-
order fluid subject to a linear velocity field. Journal of non-Newtonian Fluid Mechanics 138, 87-97. [In 
this paper the relationship between the ensemble average stress in a dilute suspension of spheres and the 
imposed rate of strain and rotation is derived for a general linear flow of a suspension in a second-order 
fluid.] 

Krieger I. M. (1972). Rheology of monodisperse latices. Advances in Colloid and Interface Science,3, 
111-136. [This paper presents experimental results on the viscosity of filled liquids under high shear 
rates]. 

Krieger I. M., Dougherty T. J. (1959). A mechanism for non-Newtonian flow in suspensions of Rigid 
Spheres. Transactions of the Society of Rheology 1, 137-152. [The classical phenomenological model for 
the viscosity of concentrated suspensions] 

Landau L. D. and Lifshitz E. M. (1958), Fluid Mechanics, 1st edition Pergamon Press, Oxford. [A 
classical textbook on fluid mechanics] 

Laun H. M. (1984). Rheological properties of aqueous polymer dispersions, Die Angewandte 
Makromolekulare Chemie 123,  335-359. [An ample experimental work on the viscosity  of aqueous 
suspensions from dilute to very concentrated systems] 

Le Meins J. F., Moldenaers P., Mewis J. (2003). Suspensions of monodisperse spheres in polymer melts: 
particle size effects in extensional flow. Rheologica Acta 42, 184–190. [Experimental characterization of 
suspensions in polymeric, viscoelastic liquids in uniaxial extensional flow.] 

Larson R. G. (1998) The Structure and Rheology of Complex Fluids Oxford University Press, Oxford 
(UK). [A general and rich textbook on complex fluids] 

Lyon M. K., Mead D. W., Elliott R. E., Leal L. G. (2001). Structure formation in moderately concentrated 
viscoelastic suspensions in simple shear flow.  Journal of  Rheology 45, 881–890. [Experimental results 
on the evolution of the particle microstructure for noncolloidal particles that are suspended in a 
viscoelastic medium]. 

Mall-Gleissle S. E., Gleissle W., McKinley G. H., Buggisch H. (2002). The normal stress behaviour of 
suspensions with viscoelastic matrix fluids. Rheologica Acta 41, 61-76. [A complete data set on normal 
stresses of viscoelastic suspensions with varying concentration]. 

Metzner A. B. (1985). Rheology of Suspensions in Polymeric Liquids.  Journal of  Rheology 29, 739-775. 
[One of the earliest review on suspensions in viscoelastic media] 

Michele J. R., Patzold R., Donis R. (1977). Alignment and aggregation effects in suspensions of spheres 
in non-Newtonian media. Rheologica Acta 16, 317–321. [Experimental observation of alignment and 
aggregation effects in suspensions of spheres in viscoelastic media] 

Nicodemo L., Nicolais L., Landel R. F. (1974). Shear rate dependent viscosity of suspensions in 
newtonian and non-newtonian liquids. Chemical Engineering Science 29, 729-735. [A complete data set 
on viscosity of viscoelastic suspensions with varying concentration] 

Phung T., Brady J. F., Bossis G. (1996). Stokesian Dynamics simulation of Brownian suspensions. 
Journal of Fluid Mechanics 313, 181-207. [The non-equilibrium behaviour of concentrated colloidal 
dispersions studied by Stokesian Dynamics, an efficient numerical technique for simulating particles 
suspended in a viscous fluid]. 

Saunders F. L. (1961). Rheological properties of monodisperse latex systems I. Concentration 
dependence of relative viscosity. Journal of Colloid Science 16, 13-22. [The pioneering experimental 
work on the viscosity of colloidal suspensions, later explained theoretically by  Batchelor and Green 
(1972b)]. 

Stickel J. J., Powell R.L. (2005). Fluid mechanics and rheology of dense suspensions. Annual Review of 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

RHEOLOGY -Vol. II - Suspensions, Emulsions and Foams - Pier Luca Maffettone, Francesco Greco 
 

©Encyclopedia of Life Support Systems (EOLSS) 
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1720. [Experimental characterization of the deformation of drops suspended in an immiscible liquid 
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[A classical paper with a rich data set on drop breakup in Newtonian systems]. 
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polymer blends in the melt. Interpretation of data with a model of emulsion of viscoelastic liquids. 
Macromolecules 26, 320–329. [The linear viscoelastic data of polymer blends confirm the validity of the 
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paper on the experimental visualization of drop deformation in linear flows]. 

Stone H.W. (1994). Dynamics of drop deformation and breakup in viscous fluids. Annual Reviews of 
Fluid Mechanics 26, 65–102. [An updated review on the single drop problem with Newtonian 
components]. 

Takahashi Y., Kurashima N., Noda. I, Doi M. (1994). Experimental tests of the scaling relation for 
textured materials in mixtures of two immiscible fluids. Journal of Rheology 38, 699-712.[An 
experimental paper on the rheology of binary mixtures of immiscible Newtonian fluids both during 
transient and at the steady state]. 

Taylor G.I. (1932). The Viscosity of a Fluid Containing Small Drops of Another Fluid.  Proceedings of 
the Royal Society of London Series A 138, 41–48. [A historical paper on the prediction of the viscosity of 
dilute emulsions which extends the work of Einstein (1906, 1911) on suspensions of solid particle to the 
case of deformable drops]. 

Taylor G.I.(1934). The Formation of Emulsions in Definable Fields of Flow. Proceedings of the Royal 
Society of London Series A 146, 501–523. [The first experimental validation of the small deformation of 
drop deformation derived in Taylor(1934)]. 
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Torza S., Cox R. G., Mason S. G. (1972). Particle motions in sheared suspensions XXVII. Transient and 
steady deformation and burst of liquid drops. Journal of Colloid and Interface Science 38, 395–411. [The 
measurements of transient and equilibrium shapes of drops suspended in a second liquid which is sheared. 
The experiments agree fairly well with extensions of Taylor's classical theory for small drop deformations 
and zero inertial effects]. 

Tretheway D. C., Leal L. G. (1999). Surfactant and viscoelastic effects on drop deformation in 2-D 
extensional flow. AIChE Journal 45, 929-937. [The deformation and breakup of polymeric drops 
suspended in an immiscible Newtonian fluid are examined for planar extensional flow in a computer 
controlled four roll mill are examined]. 

Tretheway D.C., Leal L. G. (2001).  Deformation and relaxation of Newtonian drops in planar extensional 
flows of a Boger fluid. Journal of non-Newtonian Fluid Mechanics 99, 81–108. [This paper is an 
experimental investigation of the deformation and relaxation of a Newtonian drop suspended in a PIB/PB 
Boger fluid]. 

Tucker III C. L., Moldenares P. (2002). Microstructural evolution in polymer blends. Annual Reviews of 
Fluid Mechanics 34, 177-210. [An informed review on modern the theories and experimental tools to 
describe the morphology of polymer blends]. 

Uijttewaal W. S. J., Nijhof E. J. (1995). The motion of a droplet subjected to linear shear-flow including 
the presence of a plane wall.  Journal of Fluid Mechanics 302, 45-63. [A numerical paper showing that in 
the presence of a wall the droplet migrates with respect to a material element in the undisturbed flow 
field]. 

Van Puyvelde P., Moldenaers P., Mewis J., Fuller G. G. (2000). On the existence of a stress-optical 
relation in immiscible polymer blends. Langmuir 16, 3740–3747. [An experimental paper where linear 
conservative dichroism is used to characterize flow-induced microstructural changes of polymer blends]. 

Varanasi P. P., Ryan M. E., Stroeve P. (1994). Experimental study on the breakup of model viscoelastic 
drops in uniform shear flow. Industrial Engineering and Chemistry Reasearch 33, 1858-66. [An 
experimental paper that investigates the characteristics of deformation and breakup of model viscoelastic 
drops suspended in immiscible purely viscous Newtonian fluids undergoing simple shear flow]. 

Veenstra H., Verkooijen P. C. J., van Lent B. J. J., van Dam J., de Boer A. P., Nijhof A. P. H. J.  (2000). 
On the mechanical properties of co-continuous polymer blends: experimental and modelling. Polymer 41, 
1817-1826. [Mechanical properties of polymer blends with co-continuous morphologies are measured 
and compared to the properties of blends of the same polymers with a droplet/matrix morphology]. 

Vinckier I., Moldenaers P., Mewis J. (1996). Relationship between rheology and morphology of model 
blends in steady shear flow Journal of Rheology 40, 613–631. [The flow induced microstructure is 
studied on model systems of nearly inelastic polymers. Measurements of the storage modulus and of the 
first normal stress difference are enhanced by interface elasticity and are used to probe the blend 
morphology]. 

Yu W., Bousmina M. (2003).  Ellipsoidal model for droplet deformation in emulsions. Journal of 
Rheology 47, 1011-1039. [An ellipsoidal model for droplet deformation in mixtures of Newtonian fluids 
is proposed]. 

FOAMS 

Buzza D. M. A., Lu C. Y. D., Cates M. E. (1995). Linear shear rheology of incompressible foams. 
Journal de Physique II 5, 37–52. [Various mechanisms for viscous dissipation in the linear response to 
oscillatory shear of incompressible foams are critically examined]. 

Calvert J. R. (1990). Pressure drop for foam flow through pipes. International Journal of Heat and Fluid 
Flow 11, 236–41. [This papers presents a simple model to calculate slip-layer thickness from the average 
bubble size which is then used to predict the pressure drops for many flows]. 

Coussot P., Raynaud J. S., Bertrand F., Moucheront P., Guilbaud J. P., Huynh H. T., Jarny S., Lesueur D. 
(2002). Coexistence of liquid and solid phases in flowing soft-glassy materials. Physical Review Letters 
88 art. no 218301. [Magnetic-resonance-imaging rheometrical experiments show that concentrated 
suspensions or emulsions cannot flow steadily at a uniform rate smaller than a critical value]. 

Da Cruz F., Chevoir F., Bonn D., Coussot P. (2002). Viscosity bifurcation in granular materials, foams, 
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and emulsions. Physical Review E 66 art. no. 051305. [This paper shows that the rheological properties of 
dry granular materials, as well as foams and emulsions, are similar to typical thixotropic fluids: under a 
sufficiently strong shear the viscosity decreases in time, leading to a hysteresis in an up-and-down stress 
ramp]. 

Durian D. J. (1997). Bubble-scale model of foam mechanics: Melting, nonlinear behavior, and 
avalanches. Physical Review E 55, 1739–51. [The predictions of a foam model for linear rheological 
properties as a function of polydispersity, and the gas-liquid ratio. It is shown that the elastic character 
vanishes with increasing liquid content in a manner that is consistent with rigidity percolation and that is 
almost independent of polydispersity]. 

Durian D. J., Weitz D. A.,  Pine D. J. (1991a). Multiple light-scattering probes of foam structure and 
dynamics. Science 252, 686-688. [The structure and dynamics of three-dimensional foams are 
experimentally probed by exploiting the strong multiple scattering of light. A model for dynamic light 
scattering is developed allowing the identification previously unrecognized internal dynamics of the foam 
bubbles]. 

Durian D. J., Weitz D. A., Pine D. J. (1991b). Scaling behavior in sheving cream. Physical Review A 44, 
R7902–5. [The coarsening of a three-dimensional foam is studied with multiple light-scattering 
techniques. Scaling behavior is observed with the average bubble diameter growing in time as t0.45]. 

Enzendorfer C., Harris R. A., Valko P., Economides M. J., Fokker P. A., Davies D. D. (1995). Pipe 
viscometry of foams. Journal of Rheology 39, 345–58. [This paper describes a method for extracting 
useful information from small-scale pipe viscometer measurements of foam rheology.]. 

Gardiner B. S., Dlugogorski B. Z., Jameson G. J. (1998). Rheology of fire-fighting foams. Fire Safety 
Journal 31, 61–75. [This paper examines the rheological properties of compressed-air foams and contains 
velocity profiles of foams flowing through straight horizontal tubes. It is shown that a master equation can 
be derived from the experimental data to account for a range of expansion ratios and pressures normally 
encountered during pumping of polyhedral-in-structure fire-fighting foams]. 

Gopal A. D., Durian D. J. (1999).  Shear-induced "melting" of an aqueous foam. Journal of Colloid and 
Interface Science 213, 169–78. [This paper presents diffusing-wave spectroscopy measurements of 
bubble dynamics in a continuously sheared aqueous foam.]. 

Gopal A. D., Durian D. J. (2003). Relaxing in foam. Physical Review Letters 91, art. no 188303. [This 
paper reports how aqueous foams lose their elasticity along two trajectories in the jamming phase 
diagram. With time, bubbles unjam due to coarsening. With shear, bubbles also unjam]. 

Hemar Y., Hocquart R., Lequeux F. (1995). Effect of interfacial rheology on foams viscoelasticity, an 
effective medium approach. Journal de Physique II 5, 1567–76. [In this simulation paper the influence of 
interfacial rheology on the macroscopic foam viscoelasticity is described]. 

Herzhaft B. (2002). Correlation between transient shear experiments and structure evolution of aqueous 
foams.  Journal of Colloid and Interface Science 247, 412–23. [This experimental work deals with 
rheological properties of aqueous foams and slip phenomena. Rheological measurements are performed 
on a stable foam with a parallel plate rheometer]. 

Höhler R., Cohen-Addad S. (2005). Rheology of liquid foam. Journal of Physics: Condensed Matter 17, 
R1041–R1069. [A rich and informative review on the rheology of foams]. 

Khan S. A., Armstrong R. C. (1986). Rheology of foams: I. Theory for dry foams. Journal of non-
Newtonian Fluid Mechanics 22, 1–22. [This paper presents a two-dimensional model for foams having 
gas volume fraction approaching unity. A general expression for the stress tensor is obtained which gives 
the total stress in terms of the shape of the cells, interfacial tension, the initial cell orientation, and the rate 
of deformation in the liquid]. 

Khan S. A., Armstrong R. C. (1987). Rheology of foams: II. Effects of polydispersity and liquid viscosity 
for foams having gas fraction approaching unity. Journal of non-Newtonian Fluid Mechanics 25, 61–92. 
[The constitutive model for foams developed in the previous paper is extended to study the influence of 
polydispersity on small deformations and the coupled effects of viscous and interfacial forces present in 
the foam films on both small and large deformations]. 

Khan S. A., Prud’homme R. Editors (1996). Foams: Theory, Measurements, and Applications, Marcel 
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Dekker Inc., New York (USA). [A book with several contributions on foam physics and applications]. 

Khan S. A., Schnepper C. A., Armstrong R. C. (1988). Foam Rheology: III. Measurement of Shear Flow 
Properties. Journal of Rheology 32, 69–92. [An experimental paper on foam rheology where a method is 
proposed for generating reproducible and stable foam capable of retaining its structure for prolonged 
times]. 

Kraynik A. M., Hansen M. G. (1987). Foam rheology: a model of viscous phenomena. Journal of 
Rheology 31, 175–205. [This paper presents a theoretical model for foam rheology that includes viscous 
forces by considering the deformation of two-dimensional, spatially periodic cells in simple shearing and 
planar extensional flow]. 

Larson R. G. (1999) The Structure and Rheology of Complex Fluids. Oxford University Press,  New York 
(USA). [A rich and informed textbook on complex fluids]. 

Macosko C. (1994). Rheology, Principles, Measurements and Applications, Wiley–VCH New York 
(USA). [A classical textbook on rheology]. 

Marze S. P. L., Saint-Jalmes A., Langevin D. (2005). Protein and surfactant foams: linear rheology and 
dilatancy effect. Colloids Surfaces A 263, 121–8. [This work reports results on the dependence of foam 
rheology on the nature of its components (gas, liquid and surfactant)]. 

Mason T. G., Bibette J., Weitz D. A. (1996). Yielding and flow of monodisperse emulsions. Journal of 
Colloid and Interface Science 179, 439–48. [An experimental work showing the yield transition of 
monodisperse emulsions as the volume fraction and droplet radius are varied]. 

Okuzono T., Kawasaki K., Nagai T. (1993). Rheology of random foams. Journal of Rheology 37, 571-
586. [This paper presents the computational study of the rheology of two-dimensional random cellular 
systems such as foam or concentrated emulsion systems]. 

Princen H. M. (1983).  Rheology of foams and highly concentrated emulsions : I. Elastic properties and 
yield stress of a cylindrical model system. Journal of Colloid and Interface Science 91, 160–175. [In this 
paper expressions are derived for the stress vs strain relationship, yield stress, and shear modulus, of 
monodisperse foams and highly concentrated emulsions for the model of infinitely long cylindrical 
drops]. 

Princen H. M. (1985). Rheology of foams and highly concentrated emulsions. II. experimental study of 
the yield stress and wall effects for concentrated oil-in-water emulsions.  Journal of Colloid and Interface 
Science 105, 150–171. [An experimental work on the rheology of foams and emulsions]. 

Princen H. M., Kiss A. D. (1989).  Rheology of foams and highly concentrated emulsions : IV. An 
experimental study of the shear viscosity and yield stress of concentrated emulsions. Journal of Colloid 
and Interface Science 128, 176–185. [The yield stress and shear viscosity are determined for a series of 
well-characterized, highly concentrated oil-in-water emulsions]. 

Saint-Jalmes A. (2006). Physical chemistry in foam drainage and coarsening. Soft Matter 2, 836-849. [An 
illustrative review on foam drainage and coarsening, focused on the effective role of the foam chemical 
components on those aging processes.] 

Weaire D., Fortes M. A. (1994). Stress and strain in liquid and solid foams. Advances in Physics  43, 
685–738. [A review on both liquid and solid foams, concentrating on the basic understanding of the 
underlying mechanisms, in terms of specific structural models]. 

Weaire D., Hutzler S. (1999). The Physics of Foams, Oxford University Press, Oxford (UK). [A 
monograph on foam rheology]. 

Weaire D., Kermode J. P. (1984). Computer simulation of a two-dimensional soap froth II. Analysis of 
results. Philosophical Magazine B 50, 379–395. [Computational results are presented for a simulated two-
dimensional soap froth]. 
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