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Summary 
 
Providing the link to microscopic processes taking place at the atomic level, molecular 
simulation methods have developed to an indispensable tool for elucidating structure-
property-processing relationships in all fields of materials science and engineering. 
Although continuum models of materials and of their macroscopic behavior continue to 
be important in chemical, pharmaceutical and biotechnology industries, life sciences are 
becoming clearly linked today to concepts referring to molecular phenomena. The two 
main thrusts are molecular simulations and computational quantum chemistry, coupled 
with modeling and interpretation of the results (informatics). Molecular simulation is 
based on classical Newtonian physics, modeling interactions within or between 
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molecules using interaction forces (force fields). Systems are modeled either 
deterministically (molecular dynamics, which integrates classical equations of motion) 
or stochastically (Monte Carlo methods). In contrast, computational quantum chemistry 
is based on quantum physics, primarily applied to the electronic structure of atoms or 
molecules. The immediate results are wavefunctions or probability density functionals 
describing electron states. This chapter reviews the two classical molecular simulations 
methods (molecular dynamics and Monte Carlo) capable of probing structure and 
dynamics at the atomistic level. A review of the dissipative particle dynamics (DPD) 
method, which is suitable for the mesoscale modeling of material domains (it finds 
extensive applications in the study of biological membranes), is also included.  
 
1. Introduction 
 
In recent years chemical engineers have become increasingly involved in the design and 
synthesis of new materials and products based on complex molecules as well as in the 
development of biological processes and biomaterials. Most of these applications often 
demand that one understands the molecular mechanisms shaping the physicochemical 
properties of these systems so that the product properties are controlled with precision. 
Molecular modeling, simulating chemical and molecular structures or processes by 
computer, significantly aids scientists in this endeavor. Typical applications of 
theoretical and computational methods to specific chemical engineering technologies 
today include: (1) the bottom-up and top-down design of self-organizing materials (by 
understanding e.g. the mechanisms and principles of peptide self-assembly into α-sheet 
tapes) and of bio-inspired materials for multifunctional biomedical applications, (2) 
manipulating structure and properties in high-performance, nanostructured materials for 
the design of systems for a variety of chemical, physical, and biological technologies, 
(3) understanding and modeling the kinetics of chemical reactions which is crucial to 
any research and development effort aimed at process optimization and innovation (e.g., 
the quantum modeling of elementary-reaction kinetics in flames, PECVD plasmas, 
polymer decomposition, and homogeneous catalysis; the first-principles simulation of 
heterogeneous catalysis using density functional theory; computational chemistry 
approaches to industrial chlorination and automotive lubricant additives; hybrid 
quantum chemistry/molecular mechanics approaches to solvated homogeneous 
catalysts; and computational spectroscopy methods for quantitative thermochemistry), 
(4) predicting the mechanical behavior of glassy materials and of ceramic and 
nanophase composites and understanding the microscopic electronic processes 
controlling the properties of ferroelectric and photonic materials and semiconductors, 
(5) simulating pattern formation in systems undergoing phase transitions, and (6) 
understanding the molecular origin of polymer viscoelasticity which governs the 
rheological properties of complex, chain-like molecules. Being broadly applicable 
because “everything” is made of atoms and molecules, in all these fields, molecular 
modeling is the limit of the reductionist approach to chemical engineering. And its 
power is growing rapidly with the continuing development of computer power, new 
algorithms, and the availability of software. Today, molecular modeling: (a) can provide 
useful estimates of the properties and behavior of materials even before they have been 
synthesized, (b) can provide useful estimates of the parameters and behavior needed to 
do traditional chemical engineering process development and design, and (c) is often the 
most efficient way to obtain these estimates. It is thus considered the best partner of 
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experiments and of the traditional estimation and design approaches, something that all 
chemical engineers should be aware of. But we ought to state that even in molecular 
modeling certain approximations are usually employed, whose validity varies with the 
method and with the system considered. Some approximations are quite valid for some 
systems and one can expect useful results when a suitable method is used to predict 
some subset of properties for those systems. We should not blindly apply a given 
method to all systems and rationally expect useful answers. A given method will 
typically supply only some of the properties and information needed to solve a given 
problem. Thus, although molecular modeling can and does replace some unnecessary 
experimentation (often leading to insights which initiate new experiments), molecular 
modeling techniques are most useful when used in combination with each other and 
with experiment. 
 
 
2. Molecular Simulations 
 
Molecular simulations differ from other forms of numerical computation in that the 
computer with which the calculations are carried out is not merely a machine but the 
virtual laboratory in which the system is studied. In such a “laboratory”, understanding 
is achieved by constructing first a theoretical model of molecular behavior able to 
reproduce and predict experimental observations and then solving it using a suitable 
algorithm or a computer program. Molecular dynamics (MD) and Monte Carlo (MC) 
are two such methods capable of providing accurate predictions of the thermodynamic, 
mechanical, permeability, electrical, optical and other properties of materials. For 
systems coarse-grained to the level of soft particles, an appropriate method to use is 
dissipative particle dynamics (DPD). 
 
MD is a deterministic method at the heart of which is the solution of Newton’s classical 
equations of motion; these are integrated numerically to give information for the 
positions and velocities of atoms in the system. Let us consider a system consisting of 
N  interacting atoms or atomistic units described by a potential energy function U , 
which depends in general on the position vectors ir  of all atoms present in the system: 
 

1 2( , ,..., )NU U= r r r   (1) 
 
Then, Newton’s equations of motion read: 
 

,    1, 2,...,i i im i N= =r F  (2) 
 
i.e.,  
 

2
1 2

2
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d Um i N
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∂
= − =

∂
r r r r
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where im  is the mass of atom i , ir  its position vector, iF the force acting on it and t  the 
time. Solving the equations of motion then involves the integration of the 3N second-
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order differential equations (Newton’s equations). 
 
The classical equations of motion possess some interesting properties, the most 
important one being the conservation law. If the kinetic energy K  and the potential 
energy V  of the system do not depend explicitly on time, then it is straightforward to 

verify that dHH
dt

⎛ ⎞=⎜ ⎟
⎝ ⎠

 is zero [1], where H  is the Hamiltonian of the system, i.e., the 

sum of K  and U , H K U= + ; consequently, H  is a constant of the motion. In actual 
calculations, this conservation law is satisfied if there exist no forces acting on the 
system that depend explicitly on time or velocities. A second important property is that 
the corresponding equations of motion for the generalized coordinates (Hamilton’s 
equations) are reversible in time. This means that changing the signs of all velocities 
will cause the atoms to retrace their trajectories backwards. The computer-generated 
trajectories should also possess this property. 
MC, on the other hand, is a computing method for simulating the properties of matter 
that relies on probabilities. In contrast to MD, however, where the atoms are moved 
according to the inter- and intra-molecular forces derived from the potential function U  
by solving Newton’s equations of motion, MC is a stochastic method based on 
transition probabilities between different states of the simulated system [2,3]. These 
transitions are traced through a scheme that involves three (3) main steps: (a) generation 
of an initial configuration, (b) trial of a randomly generated system configuration, and 
(c) evaluation of an “acceptance criterion” for the trial configuration and comparison to 
a random number to decide whether the trial configuration will be accepted or not. The 
acceptance criterion is usually formulated in terms of the potential energy change 
between trial (new) and existing (old) states and some other properties of the new and 
old configurations, depending on how the trial transition is implemented.  
 
Being a stochastic method, MC cannot of course provide any information about the true 
dynamics of the system. Despite this, however, it has developed in the last years to a 
powerful tool for simulating the properties of matter, because of the unique capability it 
offers to accelerate system equilibration through the implementation of moves that have 
nothing to do with the natural trajectory followed by the system. In fact, one can devise 
totally unphysical ways for moving atoms that substantially depart the system from its 
natural trajectory. By cutting through energy barriers obstructing structural 
rearrangements, such cleverly-designed, unphysical moves can accelerate (by many 
orders of magnitude, in some cases) thermal equilibration at the conditions of the 
computational experiment, rendering MC a more efficient method for simulating the 
system than MD. For systems of chain molecules (e.g., synthetic polymers, branched 
macromolecules, and biopolymers), whose equilibration is hindered by the problem of 
long relaxation times, namely the fast increase in the longest relaxation time with chain 
length, this is of paramount importance. 
 
For systems represented as a set of point particles whose distribution and density is 
determined by a set of prescribed forces, a mesoscale method that can be used to study 
their properties is dissipative particle dynamics (DPD). The method shares features of 
both molecular dynamics and lattice gas automata and closely resembles the structure of 
Brownian dynamics, assuming stochastic, dissipative, and conservative forces. The 
action of conservative forces is to distribute the beads in space as evenly as possible in 
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order to minimize the free energy of the system. The dissipative forces represent friction 
and their action is to reduce velocity differences between the beads. The stochastic 
forces account for the degrees of freedom that were eliminated in the coarse-grained 
model. The magnitude of the stochastic and dissipative forces is coupled by the 
fluctuation-dissipation theorem and this serves as a thermostat for the system. The 
method is ideal for simulating among others the self-assembly behavior of amphiphilic 
micelles and bilayers, structure and morphology in systems containing microphase 
separating diblock copolymers and nanoparticles, and the interfacial properties of 
immiscible polymer blends. 
 
In the next Sections of this Chapter, we discuss in detail how the three methods are 
employed in simulations of soft matter physics systems with an emphasis on their 
applications, i.e., on the properties that can be computed with them. Before this, 
however, we will present some important issues related with the way a molecular 
simulation is carried out in a simulation box. 
 
3. The Concept of the Amorphous Cell and of the Molecular Model 
 
Atomistic simulations are executed by using either a detailed molecular model in which 
all atoms are represented explicitly or a less detailed one in which entire groups of 
atoms are lumped into single quasiatomic entities. For polyethylene, for example, the 
former (explicit-atom, EA) description requires treating hydrogen (H) and carbon (C) 
atoms separately as individual sites while the latter (united-atom, UA) allows 
considering each CH3, CH2 and CH unit as a single, united pseudoatom [4]. In 
simulations with a united-atom model, the total number of interacting sites present in 
the system is drastically reduced; however, the results that are obtained are less accurate 
than those with an explicit-atom model. To improve the accuracy of a UA 
representation, anisotropic united-atom (AUA) models are sometimes introduced, in 
which the centers of the non-bonded interactions are moved slightly away from the 
carbon centers of the united pseudoatoms. 
 
As far as the potential energy function U  is concerned, this in general involves a large 
number of terms accounting for the bonded (bond-stretching, bond angle bending, and 
dihedral angles) and non-bonded (intra- and intermolecular) interactions, and their 
couplings. A typical form is as follows [5]: 
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where l  and l′  denote bond lengths, θ  and θ ′  bond angles, φ  dihedral angles, and ijr  
interatomic distances. Also, 
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are numerical constants of the model, iq  denotes the electric charge on atom i , and ε  
the dielectric constant of the medium. 
 
To increase algorithm execution, many terms in this expression are usually omitted; for 
example, most of the higher-order terms as well as the majority of the coupling ones are 
neglected (if it is judged that their effect on the property of interest of the system under 
study is minimal). For example, if one is interested in the PVT properties or in the long-
time diffusion or in the calculation of the free volume distribution, then one can employ 
a simplified version of Eq. (4) of the form: 
 

( ) ( ) ( )2 2 0
,2 0 ,2 0 ,1 2

9 12

1 cos

       

l
l

i j ij ij

iji j i i j i ij ij

U k l l k k
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θ φ
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∑ ∑ ∑

∑∑ ∑∑
 (5) 

 
in which only the very basic terms are kept. On the other hand, if one wants to explore 
the very short-time scale dynamics of the system (local or segmental dynamics) or to 
elucidate fine details of the local structure or couplings which give rise to specific 
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patterns in (e.g.) the measured IR and Raman spectra, then one should work with the 
most accurate expression for the potential energy available; in such a case, keeping all 
terms in Eq. (4) above is “a must”. 
 
After having specified the form of the force field, one has to choose an initial 
configuration for the system with which the molecular simulation will be carried out. 
Usually the simulation is carried out in a small cell (the simulation box) filled up with a 
large number of molecules (of the substance to be simulated) so that its density is close 
to the experimentally measured one at the pressure and temperature conditions of 
interest. Typically, the total number of interacting sites present in the simulation box 
ranges from 103 to 2×104 for runs that are executed serially, with corresponding box 
dimensions on the order of 30 to 80Å. For parallel runs (executed on a cluster of CPUs), 
these numbers can be considerably different (higher) by up to two orders of magnitude 
in some cases. Before subjecting the initially generated configuration to MD or MC, it is 
imperative that the potential energy be properly minimized (in order to avoid 
undesirable atom overlaps and the concomitant numerical errors) by resorting, for 
example, to the three-stage, constant-density Molecular Mechanics (MM) technique (the 
amorphous cell method) of Theodorou and Suter [6], subject to a set of appropriate 
(periodic) boundary conditions depending on the presence or not of interfaces. To 
generate an initial configuration for practically any physical system and to minimize its 
potential energy, a number of tools are available today in the form of commercial, user-
friendly software packages, such as the Materials Studio of Accelrys [5], LAMMPS, [7] 
GROMOS [8], AMBER [9], NAMD [10], etc.  
 
4. The Molecular Dynamics Method 
 
The molecular dynamics (MD) method [11] provides system trajectories in real time by 
solving the system of 3N second order differential equations, Eq. (3), usually with a 
finite difference method, given the initial (at time 0t = ) atomic positions and velocities. 
In general, one can distinguish between two families of MD algorithms for the 
integration of classical equations of motion: higher-order (Gear) methods and Verlet 
algorithms.  
 
4.1. Higher-Order (Gear) Methods  
 
These are predictor-corrector methods which obtain an estimate of the atomic positions 
and velocities at time t dt+  by performing a Taylor expansion around time t : 
 

2 3 4
p ( ) ( ) ( ) ( ) ( ) ( )

2 6 24
dt dt dtt dt t dt t t t t+ = + + + + +r r v r r r …  (6a) 

 
2 3

p ( ) ( ) ( ) ( ) ( )
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p ( ) ( ) ( )t dt t dt t+ = + +r r r …        (6d) 
 
with the superscript p  denoting “predicted” values. The equations of motion are 
introduced in the next or “corrector” step as follows: From the predicted positions, the 
forces are calculated at time t dt+  and, consequently, also the accelerations at time 
t dt+ , c ( )t dt+r . The latter are used to estimate the size of the error in the “predictor” 
step: 
 

c p p p( ) ( ) ( ( )) ( )t dt t dt t dt t dtΔ ≡ + − + = + − +x r r r r r     (7) 
 
Then, the so called Gear coefficients 0 1 2 3,  ,  ,  ,  c c c c …  are used to correct positions, 
velocities, accelerations and higher order derivatives in the corrector step, as follows: 
 

c p
0( ) ( )t dt t dt c+ = + + Δr r x         (8a) 

 
c p

1( ) ( )t dt t dt c+ = + + Δv v x         (8b) 
 

c p
2( ) ( )t dt t dt c+ = + + Δr r x         (8c) 

 
c p

3( ) ( )t dt t dt c+ = + + Δr r x         (8d) 
These are considered as a better approximation of the true variables, and the iterations 
are continued so as to further refine the solution, until convergence is achieved. Given 
that the evaluation of the forces (i.e., of the accelerations) from the atomic positions is 
computationally quite demanding, usually one or (at most) two corrector iterations are 
carried out. 
 
- 
- 
- 
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