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Summary 
 
This article presents a concise overview of the fundamental aspects of groundwater 
studies. It provides basic definitions used in these studies and surveys the controlling 
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factors behind the provenance of groundwater, its modes of occurrence, hydraulics and 
regional flow patterns, and its environmental effects. Groundwater is envisaged here in 
its three, virtually independent, component entities: as a human commodity, as the 
subsurface segment of the hydrologic cycle, and as a geological agent. 
 
In Section 1, an attempt is made to provide the basic information needed to understand 
and appreciate all three of the above aspects. Clarification is also provided regarding the 
(sometimes ambiguously-used) terms for, and mutual relations between, the various 
disciplines dealing with groundwater. Etymologically-based explanations are given for 
the terms hydrogeology, geology, hydrology, groundwater hydrology, and 
geohydrology. 
 
In Section 2, the hydrologic cycle is reviewed, with the emphasis on groundwater as its 
subsurface component. The systems structure of the mass-movement of water in general, 
and of groundwater in particular, is revealed as an indispensable concept for the correct 
formulation of hydrologic budgets. The need to write the hydrologic equation for 
bounded reference volumes in space, and using specified reference intervals of time, is 
explained. 
 
Section 3 discusses the basic parameters needed to describe the storage, flow 
characteristics, and the different types of subsurface water, such as porosity, 
permeability, hydraulic conductivity, compressibility, and aquifer types. In connection 
with Darcy’s law, the nature of hydraulic head as a measure of energy is stressed, and 
the hydraulic gradient is presented as a measure of the fluid-driving force. The various 
qualifying adjectives applied to groundwater in different capacities, or from different 
viewpoints, are tabulated. Regional patterns of groundwater flow impelled by various 
force types, such as gravity, buoyancy, sediment compaction, dilatation of the rock upon 
erosional unloading, and tectonic compression, are presented in conclusion. 
 
Section 4 presents groundwater as a geological agent, as well as considering the causes 
and principal controlling factors of this agency. Gravity-driven systems of groundwater 
flow are used by way of example, because of their tractability relative to flow due to 
other types of impelling forces. The main processes of interaction between groundwater 
and its environment are reviewed in three categories: chemical, physical, and kinetic or 
transport processes. The resulting effects and manifestations are grouped as follows: 
hydraulics and hydrology; chemistry and mineralogy; vegetation; soil and rock 
mechanics; geomorphology; and transport and accumulation. 
 
1. Introduction 
 
1.1. Definition, Sources, and Aspects of Groundwater 
 
Groundwater is water beneath the surface of the Earth. It occupies pores, fissures, 
channels, and other types of void spaces in the rock framework that are not filled with 
other materials such as solid mineral matter, liquid hydrocarbons, or various gases 
including air. The depth of the realm of groundwater is determined by that of the open 
spaces in the crust, and may reach tens of kilometers. Common synonyms of the term 
groundwater include subsurface water and formation water in English, and their 
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equivalents in several other languages. 
 
The two principal sources of groundwater are infiltrated meteoric precipitation and 
water embedded in the accumulating sediments of seas and oceans, commonly referred 
to as connate water. The relative proportions of water derived from these two sources in 
the subsurface water body at any given time are difficult to estimate, and probably 
depend on the geological time span for which these calculations are made. There is 
strong evidence that connate waters are diluted, or even flushed, over long timespans by 
terrestrially infiltrated meteoric waters. A third, and presumably insignificant, portion of 
groundwater is thought to result directly from magmatic processes, and is called 
juvenile water. In addition, diagenesis of some minerals (for example, transformation of 
smectite to illite) may release water from crystal lattices into rock-void space. However, 
since diagenetic water must have come initially from one of the previously mentioned 
waters, this cannot be considered a true “original source.” 
 
Because of its utilitarian value, its migration underground from areas of infiltration to 
sites of discharge, and the consequences of its many-faceted interactions with its natural 
environment, groundwater can be considered to have three different aspects worthy of 
study: as a human commodity, as the subsurface element of the hydrologic cycle, and as 
a geological agent. As a human commodity it may be compared to an economic mineral: 
it must be sought, exploited, and possibly even improved. However, it is also a 
renewable resource that requires planned development, responsible management, and 
careful protection if it is to satisfy the needs of human societies on a sustainable basis. 
As the subsurface segment of the hydrologic cycle, groundwater flow transports 
infiltrating meteoric water underground to areas where it resurfaces. Here it is 
evaporated and thus enters the atmospheric moisture body, to be utilized by plants in 
their biological processes or to be discharged into various standing, flowing, or frozen 
bodies of surface water. However, groundwater is also a geological agent due to its 
ability to mobilize, transport, and deposit mineral matter, microorganisms, and heat in 
the subsurface mass. Indeed, groundwater flow is the only ubiquitous transport 
mechanism operating beneath the surface of the Earth. The effects of the interactions of 
groundwater with its environment are manifested in a great variety of natural processes 
and phenomena, both above and below the land surface. 
 
1.2. The Sciences Dealing with Groundwater 
 
Owing to the diversity and importance of the natural processes and practical problems 
involved with studying groundwater, a wide range of scientific skills and technical 
approaches are needed to deal with the various theoretical and practical questions it 
raises. The names of several of these disciplines have not been universally standardized, 
and inconsistencies in their usage are common. In an attempt to minimize this problem, 
an internally consistent set of names of groundwater-related sciences is proposed here. 
The proposed terms are advanced on the basis of their etymological meaning and 
grammatical structure. 
 
The central—or “umbrella”—discipline of groundwater studies is hydrogeology. This 
term means “geology of water” or “water geology” (“hydro-,” a Greek combining form 
for “water,” modifies the noun “geology” here). Hydrogeology may be defined as “the 
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science of those processes and phenomena resulting from the interactions between 
groundwater and the rock framework,” or for short, “the study of interactions between 
groundwater and the rock framework.” The processes and phenomena involved may be 
physical, chemical, geological, and biological. They may occur on, near, or deep below 
the land surface. They occur over varying timescales (days, seasons, years, decades, 
centuries, and entire geological periods). They involve transport of mass and energy, 
chemical reactions, and changes in heat and pore pressure. In scope, hydrogeology is 
both an earth science and an engineering discipline. It encompasses the occurrence, 
migration, and chemistry of groundwater, as well as its manifestations and applications 
for human purposes. 
 
To cover this broad scope hydrogeology draws upon certain areas of several other 
sciences, both basic and applied, including mathematics, physics, chemistry, geology, 
hydrology, soil- and rock-mechanics, pedology, botany, and so on. The relation of 
hydrogeology to other sciences that deal with groundwater may be characterized briefly 
as follows. 
 

  Geology is the science of rocks, providing information on the receptacle of 
groundwater. 

  Hydrology deals with water, which is also the object of hydrogeology. It 
studies the processes and volumes involved in the movement of, and the 
exchange of, water masses within and between the atmosphere, hydrosphere, 
and lithosphere. 

  Groundwater hydrology deals with the underground water-masses. The causes 
and effects of rock–water interactions are sideline issues for groundwater 
hydrology, unlike for hydrogeology. 

  Geohydrology is a word in which “geo-” (Earth-) is the modifier of the noun 
“hydrology” (water science), and therefore means “hydrology of the Earth.” 
Thus, the term is regarded here as the science dealing with the volumes of water 
masses on a global scale. 

 
2. The Hydrologic Cycle 
 
2.1. Concept and Characteristics 
 
The hydrologic cycle may be defined as a system of continuous exchange of water 
masses between the three global environments, namely the atmosphere, hydrosphere, 
and lithosphere. It is the central concept of hydrology and is based on the empirical 
observation that no permanent depletion or accretion of water occurs in any of the three 
“spheres.” In the present context, the atmosphere is considered to be the space above the 
Earth’s surface occupied by air; the hydrosphere comprises all bodies of liquid and solid 
water on the surface of the Earth; and the lithosphere is the upper part of the Earth’s 
crust, the void spaces and crystal lattices within which are filled with free or 
chemically-bonded water. 
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Figure 1. Conceptual illustration of the hydrologic cycle (modified from Manning, 
1992, Figure 1.1) 

 
The movement of water in the hydrologic cycle is conceptualized as the circular transfer 
of water masses between the three spheres, following a path of monotonically 
decreasing energy (Figure 1). The starting point of the cycle can be identified as the 
surfaces of land, vegetation, and open water bodies where the Sun’s direct radiation and 
environmental heating raises the energy level of the water particles to a maximum, 
causing evaporation and vegetal transpiration. From here on, the water particles seek a 
state and position of minimum energy through a continuous series of varying processes 
and forms of energy loss, such as condensation, precipitation, and flow above and below 
the land surface. They return ultimately to their initial state of relative minimum energy, 
to be re-launched on their cycle by energy input from the Sun. Based on this scenario, 
combined with the observation that there are no sources or sinks that alter the total mass 
of globally-circulating water, the global hydrologic cycle may be said to have three 
fundamental properties: it is closed, conservative, and energy driven. 
 
2.2. Component Processes and Systems Structure 
 
These general processes of water circulation can be broken down into a number of 
specific processes, all of which can occur on local, regional, or global scales. Through 
each of these processes, or elements, of the hydrologic cycle the energy level of the 
water particles drops due to a loss of heat, altitude, pressure, or some combination 
thereof. 
 
The initial step in the cycle is evaporation and vegetal transpiration (together also 
termed evapotranspiration), in which the energy level of the water molecules is raised 
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from the local minimum to a maximum by the Sun’s heat and light energy. This energy 
is converted to the potential of the water particles by lifting them from open water 
bodies, snow and ice, moist soils, and the leaves of plants into the atmosphere. By 
losing some portion of this energy through condensation and precipitation, the water 
will subsequently fall back onto the lithosphere or hydrosphere in the form of rain, snow, 
sleet, dew, frost, and so on. Upon reaching the surface, that part of the precipitation that 
has not already evaporated will remain temporarily on the surface, infiltrate into the 
ground, or flow overland. Interception and surface detention are those elements of the 
hydrologic cycle by which water is retained temporarily above ground level by plant 
leaves, buildings, paved or metalled surfaces (interception), or depressions in the land 
surface (surface detention). By means of infiltration, an element of the precipitation 
either will be added to the soil moisture or will reach the water table. Through overland 
flow and interflow the third element of precipitated water moves over the land surface as 
sheet flow or in rivulets, and in the unsaturated zone above the water table, towards 
areas of lower energy levels, either to reach bodies of surface water or to be evaporated 
en route. Those portions of the circulating water reaching the water table and streams 
will participate in the runoff components of the cycle. The main types of runoff are the 
surface runoff or stream flow, and subsurface runoff or groundwater flow. Consequently, 
runoff = surface runoff + groundwater flow. 
 

 
 

Figure 2. System structure of the hydrologic cycle, on local and regional scales: open 
system (modified from Ward, 1975, Figure 1.5) 
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The hydrologic cycle may be considered as a physical, sequential, dynamic system, 
comprising seven subsystems. According to this view, a system is an assemblage of 
parts united by some kind of regular interaction. A physical system is a system in the 
real world; a sequential system consists of an input, throughput, and output of some 
working medium (for example, matter); and a dynamic system is a physical system 
which receives certain quantitative inputs and accordingly acts concertedly under given 
constraints to produce certain quantitative outputs (Figure 3). 
 

 
 

Figure 3. Diagrammatic representation of a sequential system (after Ward, 1975, Figure 
1.4) 

 
The seven subsystems of the hydrologic cycle (Figure 4), each having its own “input 
→ throughput → output” sequence, are 
 

 vegetation 
 land surface 
 soil moisture 
 groundwater 
 channel storage 
 ocean basins, and 
 atmosphere 

 
These subsystems are linked by the different components of the hydrologic cycle 
mentioned above. 
 
Attributing a systems structure to the hydrologic cycle has some distinct advantages. It 
provides a unifying framework which facilitates an overview of a complex group of 
processes and phenomena.  
 
It demands a rigorous formulation of concepts, and full consideration of the mutual 
interactions between the various subsystems, comparable in some ways to the 
advantages offered by computer programs as opposed to unconstrained quantitative 
descriptions. It also enables and simplifies mathematical simulations, resulting in real-
life models. 
 
Figures 2 and 4 present systems diagrams of the hydrologic cycle, on a local or regional 
scale and on the global scale respectively. Although the subsystems and the component 
processes are the same on both scales, one fundamental difference exists.  
 
On a spatially delimited (local or regional) scale the hydrologic cycle is an open system: 
water can move both into and out of it across its geographical boundaries, and thus the 
total amount of water within those boundaries can vary. On the global scale, however, 
the cycle is closed. Water is neither gained nor lost by the system, and its total volume 
therefore remains constant. 
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Figure 4. System structure of the hydrologic cycle, global scale: closed system 
(modified from Ward, 1975, Figure 1.6) 
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