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Summary 
 
Functioning of a river basin is first described in terms of a simple system model, in 
order to agree on terminology and set the stage for a classification of decision and 
planning problems. In this classification, a distinction is made between single and multi-
period, then multipurpose and multi-goal problems. The possible level and phase of 
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development of a river basin are examined and the types of uncertainties that arise in 
planning are briefly reviewed. 
 
Basic tools for analyzing water resources systems range from benefit-cost analysis, 
multi-criterion decision making and programming, cost-effectiveness analysis (CE) to 
artificial intelligence schemes. It appears that the CE methodology provides a simple yet 
fairly comprehensive step-by-step approach to water resources management, including 
ex-post or hindsight studies. Difficulties may emerge as soon as one of the steps of CE 
is not considered, starting with the failure to define carefully economic, social, and 
environmental objectives, constraints and impacts. 
 
1. Introduction 
 
The first task in this paper is to attempt to provide a unifying yet simple approach for 
attacking the complex problems that are encountered when managing water resources 
systems. There are many methods available and then many levels at which decision 
problems may be considered. Most approaches follow a common thread. Clearly, before 
rational decisions may be made, one must first define the problem on hand and at the 
same time understand how the system operates: how can we build a reservoir or a flood 
levee without some knowledge of the local hydrology? How can we  even design it 
without knowledge of capital, operation and maintenance funds available and legal 
constraints that may be applicable during the lifetime of the project? How can we speak 
of sustainability if the long-range impacts of a project have not been estimated? 
 
At this point, a model-based mathematical system model similar to the one introduced 
in chapter “Multi-criteria Decision Analysis in Water Resources Management”  [by L. 
Duckstein and A. Tecle] will be sketched briefly, so as to make the necessary 
multidisciplinary approach manageable. First, define a discrete time scale and then the 
following five elements: 
 
The first element is the state s(t) of the system; s(t) is a vector of descriptors of the 
presence and motion of all categories of water, (and related people or goods) at a given 
sampling interval that includes time t. Note that this interval may be a day, week, month 
or year. Elements of the state may be represented by an instantaneous reading of a meter 
or an average taken over the time interval of interest. This state is akin to an inventory 
listing, including the human factors: water demand and consumption, reclamation, 
institutional arrangements, population, local, regional and national economy, aesthetics, 
legal and political factors. Furthermore, as explained in the above mentioned chapter, 
the state also includes running criteria called performance indices. 
 
The second element is the input x(t) into the system, which is a set of functions and 
variables that modifies members of the state set. For example, a new international 
agreement is an input that may change the water quality state variable of a given 
transboundary river basin At least six broad classes of inputs may be distinguished: 
deterministic, uncertain (probabilistic) or vague (fuzzy) and, under each of those three 
categories, passive (non-controllable) and active (controllable). A flood is a passive 
probabilistic input. A reservoir release is an active deterministic input. Decisions such 
as subsidy, taxation, determination of a discount rate, flood plain zoning are also active 
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deterministic inputs. Note that the consideration of a comprehensive set of input 
elements enables one to study the impact on a water resources system of decisions made 
“outside” of the water sector. 
 
The third element is a function F that determines how the state changes as a 
consequence of the application of an input. More precisely, the state s(t+1) at time t + 1 
is given by the state transition function 
 
s(t+1)=F(x(t), s(t))     (1) 
 
For example, the human-induced content of nutrient loading into a river, a component 
of x(t), changes the dissolved oxygen, a component of s(t), to a value of s(t+1). As 
another example, the input of a safety margin ΔH(t) added to an existing levee of height 
(state) H(t) changes the expected flood damage to a lower value. Hydrological studies 
are necessary for the definition of system state and input. 
 
The fourth element of the analysis framework is the output z(t) of the system; this 
output may be chosen subjectively. It may simply be an element of the state, an 
objective function, such as the net benefit due to increasing the height of a levee, the 
expected number of lives saved by a flood warning system or the number of persons 
displaced by a dam. In general, the output may include a figure of merit composed of 
several performance indices. 
 
The fifth element of the analysis framework is the output function G of the system. To 
obtain output z(t), we define such a function or rule G that calculates or evaluates this 
output when the state is given: 
 
z(t) = G(s(t))      (2) 
 
In this formulation, for example, the net benefit or cost of operation z(t) of year t is 
evaluated as a function of system state s(t). The net present value would be a figure of 
merit evaluated over the whole lifetime of the system. 
 
Systems may be coupled in series or parallel. A system coupled to itself means 
feedback. This simplified system description enables us to agree on a common 
language. The phrase “decision making” refers to the numerous decisions that must be 
made during the various water resources systems analysis phases. Such decisions 
include engineering aspects (size of a dam) and social ones (priorities for allocating 
water). In the remainder of this paper such decision problems are classified, basic 
approaches to decision making are described and embedded into frameworks designed 
to aid decision making, especially the so-called cost-effectiveness (CE) approach. The 
development of the CE methodology was first defined, in a systematic form, by 
Kazanowski in 1968. Applications are found in the references.  
 
2. Classification of Decision and Planning Problems 
 
2.1 Space-time Aspects of Problems 
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In real life situations, decisions are rarely taken in one large step: people usually follow 
a sequential procedure. For example, a plan may be set up to develop a river basin, but 
then the problem is decomposed into river sections (in space) and development phases 
(in time); decisions are taken within each section and phase. The problem is then to 
coordinate those various decisions, whenever a river basin is divided into sections, and 
an optimum plan should be drawn up jointly for that set. Juxtaposing the sections 
optima is acknowledged to be a sub-optimal procedure. 
 
Most decision-making models are inherently for a single time period; the introduction 
of multiple periods creates conceptual and computational difficulties that may be 
insurmountable. Multiperiod or multi-section optimization may be performed using a 
dynamic programming approach that is an optimum procedure by definition. However, 
the method is seriously limited because the state vector s(t) should not have more than 
two or three elements; furthermore, a stochastic state transition function F (Eq. (1)) may 
render computations untractable; also, it is very difficult to use multi-objective decision 
models sequentially in time. Note that even if gross approximations must be used, it is 
preferable to seek an optimum for the complete time horizon or total river basin, rather 
than juxtapose section/local or stage optima calculated separately. This is well 
illustrated in standard operations research texts. 
 
2.2 Multipurpose versus Multi-goal Problems 
 
It is useful to distinguish between goals or objectives of a development scheme, and 
purposes of a project. In general, goals or objectives are stated in societal terms: 
economic efficiency, income distribution, self-sufficiency, social welfare, quality of 
life, safety, sustainability; while the purposes of a given structure, e.g., a dam, are given 
in physical (or engineering) terms: power production, navigation, flood control, water 
supply, irrigation. Thus, a multipurpose reservoir may be planned to satisfy either the 
single objective of economic efficiency, or the dual objectives of economic efficiency 
and social welfare. Further, a flood levee, which is a single purpose structure (flood 
control), may be built to satisfy the goals of economic efficiency, social welfare and 
safety. 
 
In terms of system description, the attainment of goals is measured by elements of the 
output vector of Eq. (2), such as figures of merit, while purposes should be included 
into the system description itself (function F of Eq. (1)). Although it is easier to design 
multipurpose projects than multi-objective river basin systems, the objectives of 
planning, especially social ones, should always be clearly stated at the beginning of the 
process; most modern systems design methodologies, including CE, make this point 
quite clear. 
 
Water resources system development may be started at various existing levels. Using 
the example of river basins, at the first level, the river must be trained, that is, 
elementary flood protection measures must be taken. Along many rivers in the world, 
this protection work was started in the early nineteenth century. At the second level, 
more sophisticated measures, such as flood plain zoning may be taken, and flood 
control reservoirs are built. The third and highest level of development happens when 
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enough multipurpose storage capacity exists for utilization in the dry seasons (or years) 
of almost all the water available during the wet seasons (or years). 
 
2.3 Uncertainties 
 
It is important to recognize that several types of uncertainties may be present, otherwise 
poor planning may occur with high social and economic costs. This point is developed 
further in the Section 3. 
 
In particular, the strategic uncertainties in the social goals should be identified. For 
example, environmental or sustainability objectives, which may be unimportant at the 
early stage of development, may later become primary goals. This is particularly true 
when uncertain consequences of water resources development occur, e.g., some 
unforeseen downstream erosion problems, or public health problems emerging because 
of water resources development (e.g., snail and other water-borne diseases in newly 
irrigated African and Asian regions). Finally, the uncertainty in the consequences of 
international agreements, which may involve not only water quality and quantity 
aspects but also political, financial and technical ones, should be taken into account. 
 
3. Basic Approaches 
 
A range of tools has been proposed in recent years to assist in the evaluation and 
management of water resources. These tools are variously named: benefit-cost, benefit-
risk, systems analysis, operations research, simulation, cost-effectiveness, welfare 
theory or collective utility, multi-criterion approaches, sequential multi-objective 
problem solving, decision theory which include Bayesian decision theory and artificial 
intelligence (neural nets, fuzzy logic). 
 
A brief review of some of these tools will now be undertaken. 
 
- 
- 
- 
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