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Summary 
 
Mathematical models for description of water motion in the natural water bodies on the 
Earth are considered. Starting from classic mathematical models of hydrodynamics the 
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consideration extends over a wide range of the models for different water bodies: rivers, 
lakes, estuaries, seas, and oceans. 
 
The models considered are related to the new scientific discipline which comes out of 
classical Hydrodynamics in the last quarter of the 20th century – Geophysical 
Hydrodynamics. It studies natural water objects and phenomena. The main peculiarities 
of physical problems and mathematical models of Geophysical Hydrodynamics are 
rotation, stratification, complex geometry of water bodies, nonlinearity and turbulent 
character of water flows. Complex physical character of natural objects and processes 
determines the main mathematical instrument which is mostly used in Geophysical 
Hydrodynamics – mathematical modeling and numerical analysis. 
 
Models at different levels of physical complexity ranging from conceptual one-
dimensional model of a selected phenomenon to three-dimensional ones describing a 
wide spectrum of different scale water motions are presented. Some information about 
pronounced processes is included and their typical mathematical model equations are 
discussed. These are river discharge model; models of tidal, surface, internal, and long 
solitary waves in lakes, seas, and oceans; ocean and sea general circulation model; 
ecosystem model; etc. 
From a mathematical point of view the models discussed are initial – boundary value 
problems for partial differential equations and system of equations. The governing 
equations belong to different types of differential equations: hyperbolic, parabolic, and 
to the non-classical system of equations which contains as evolutionary (prognostic) 
equations as equations without time derivatives. The following well-known equations 
are considered: Saint Venant, Korteweg de Vries, Bussinesq, shallow-water, and ocean 
general circulation primitive equation system. 
 
1. Introduction 
 
Mathematical models in water sciences describe a wide spectrum of processes at 
different time and space scales which take place in various water bodies on the Earth. 
The circulation of water in artificial reservoirs in laboratories and engineering 
(industrial) constructions; currents and waves in rivers, lakes and coastal areas; 
circulation in the sea and ocean; wave motions are considered here. 
 
Physical processes which are described by mathematical models have a complex 
character. From a mathematical point of view the peculiarity of the models which are 
used in water sciences is primarily connected with non-linear phenomena. This makes it 
difficult, and in most cases impossible, to find their exact solutions and therefore leads 
to the necessity of using numerical calculations and experiments.  
 
From an engineering and economic point of view, in such studies we should take into 
account the hardness and high price of measurements and observed data, the heavy 
expenses spent on protection from natural disasters. 
 
Historically, development of water sciences is connected first of all with the 
development of hydrodynamics, one of the oldest of sciences. Hydrodynamics is 
concerned with the laws of fluid motion and physical objects which have fluid property. 
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Fluidity is an ability to deform under the influence of weak external forces. Fluidity is 
also typical for a gas; that is why a gas is often regarded as a fluid. The main difference 
between a gas and fluid (liquid) is that they have diverse degrees of compressibility. 
Fluids as water, for instance, are slightly compressible. Their ability to form a free 
surface is connected with this property, slight compressibilityif the fluid is contained in 
some reservoir.   
 
For the description of water movement in hydrodynamics mathematical models on the 
basis of general laws of mechanics, particularly the conservation law for momentum, 
mass, and energy are used. In addition to these three conservation laws, models require 
a state equation relating several of the components in the other equations, and 
sometimes additional equations, for example salinity equation for sea water. They are 
combined with some conditions and parameters which characterize the specific 
properties of water environment: fluidity, incompressibility, turbulence, etc. 
 
Applying the general laws of mechanics and using supplementary physical 
dependencies and parameters the problem of studying water motion is reduced to some 
systems of differential or intego-differential equations. As the described movement is 
restricted by some boundaries such as lateral walls, bottom, and free surface, great 
attention is paid to the formulation of boundary conditions while constructing 
mathematical models. Boundary conditions are formulated on solid motionless and 
moving parts of the contour lines, liquid and free boundaries. The system of equations 
and boundary conditions includes also a description of the influence of the external 
forces, for example the influence of wind at the sea surface. Initial conditions are added 
to the systems which characterize the state variables at initial moment, for instance, 
motionlessness. 
 
After the formulation of a mathematical model as a system of equations with initial and 
boundary conditions, the question about its solution or qualitative study of the solution’s 
behavior arises. Historically, hydrodynamics was developed under the influence of 
mathematics. It used mathematical methods of the theory of differential and integral 
equations; the theory of complex variables and special functions; statistical methods; the 
theory of potential, etc. On the other hand, it too had an influence on mathematics itself. 
Many parts of mathematics were initiated and developed while solving hydrodynamical 
problems. 
 
With the development of theoretical methods and gain of practical experience, nonlinear 
models arose in hydrodynamics and special parameterizations of turbulent processes are 
taken into account. This results in considerable complexity of mathematical models and 
it also excludes in most cases the possibility of their exact solution. Particularly, it 
becomes distinctive for geophysical hydrodynamics, a young science which comes out 
of classical hydrodynamics in the last quarter of the 20th century. 
 
Geophysical hydrodynamics studies geophysical hydrodynamical objects and 
phenomena. These are turbulent flows on the rotating Earth, stratified by density. The 
main peculiarities of physical problems and mathematical models of the geophysical 
hydrodynamics, which is connected with water sciences are rotation, stratification, 
complex geometry of the water bodies, and turbulent character of water flow. Because 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

HYDROLOGICAL SYSTEMS MODELING – Vol. II - Mathematical Models in Water Sciences - V. B. Zalesny, R. Tamsalu 

©Encyclopedia of Life Support Systems (EOLSS) 
 

of the complex mathematical and physical character, the position and solving of 
problems in geophysical hydrodynamics are connected and determined by the 
development of approximate methods. The main method of them is the method of 
numerical modeling. Further progress in the solution of problems of hydrodynamics and 
geophysical hydrodynamics is linked with fast development of computers at the end of 
the 20th century and with methods of computational mathematics. 
 
On a level with the methods of mathematics, computational mathematics and numerical 
modeling, it should be mentioned that there is a continuous coupling of hydrodynamics 
and geophysical hydrodynamics, with physical experiments and possible natural 
observations. On the one hand, it brings these scientific fields closer to physics and on 
the other hand it stimulates the search of new mathematical approaches and methods. As 
an impressive example here we see that the methods of optimal control, statistical 
methods, data assimilation and data processing methods are more and more widely 
used. 
 
2. Mathematical Models in Hydrodynamics 
 
Extensive use of mathematical simulation methods became a distinctive feature of 
modern researches in hydrodynamics. Science and practice put forward in 
hydrodynamics such problems whose full investigation in most cases can be made only 
approximately, numerically or with the help of physical or natural experiments. Most 
hydrodynamical processes and phenomena are so complex that it is difficult to make 
their universal theory and it may be done very seldom. We mean the theory which 
would be adequate in all space-time domains. Here mathematical simulation, numerical 
experiment and observational data analysis can help the theory. 
 
Using experiments and observational – experimental data analysis it is necessary to 
understand the key factors which control the process over the some time- space 
subdomain. By selecting these factors, and leaving the less important ones in the given 
space-time subdomain, we can create a mathematical model of the process. Such a 
model could be regarded as a conceptual one, describing the main hydrodynamic 
process taking into account just the selected factors. Sometimes, by simplifying the 
geometry of the currents and sketching the process, as much as possible, one can reduce 
the model to a system of differential equations that admit an analytical study. Then 
considering secondary, finer, but still essential factors, in order to get a more detailed 
description of the real physical process, one may successively enrich the model. 
 
2.1. Incompressible Inviscid Fluid 
 
When studying the water motions, the water compressibility may be often ignored. Free 
inviscid fluid motion is expressed by Euler’s equations 
 

1( , ) ,P
t
+ ∇ = − +

U U U grad Fρ
∂
∂

  (1) 

 
div 0.=U   (2) 
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The first equation comes from Newton’s second law of motion. This is one of the main 
equations of hydrodynamics and was originally established by Euler in 1755. It contains 
the moving particles’ acceleration on its left-hand side and on the right-hand side the 
forces acting on them: pressure gradient and forcing ( F ). The second equation is the 
continuity equation. It is a mathematical form of the incompressibility condition. 
 
The fluid is regarded as a continuum. It means that any small size element of a water 
volume including fluid parcels, is considered so big that still it contains a great number 
of molecules. The function in (1) - (2): U -fluid parcel velocity, P - pressure, ρ -density, 
and F - forcing, are functions of coordinates “ , ,x y z ” and time “t ”. The velocity  

( , , )U x y z,t  with its components ( , , , ), ( , , , ), ( , , , )u x y z t v x y z t w x y z t  is defined at all the 
space points ( , , )x y z  and at the time point t . The velocity is related exactly to the 
points of the motionless space, not to the particles of the moving fluid. The same 
concerns P  and ρ . 
 
Initial  and   boundary conditions. 
 
The motion, described by Equations (1) – (2), is considered over the period 0 1( , ]∈t t t  in 
a certain domain D  with boundary D∂ . In this connection Equations (1) - (2) require 
additional initial and boundary conditions. 
 
The initial conditions are reduced to setting a velocity vector U  at initial moment 0t   
 

= 0U U             at     0=t t , everywhere in D   (3) 
 
The motion depends on the boundary conditions at D∂   for all 0 1( , ]∈t t t . In most 
problems the boundary D∂  is divided into four parts: a solid motionless boundary 1D∂  
(coastline of a lake or ocean); free surface boundary 2D∂  (sea surface); solid moving 
boundary 3D∂  (side of a floating ship) and liquid boundary 4D∂  (conventional surface 
separating, for example, the ocean from littoral  waters). On each part of the boundary 

D∂  one has to set certain conditions for the velocity vector U . 
 
At the solid motionless boundary 1D∂  the kinematic (no-normal-flow) condition is 
usually set as: 
 

0=nU              or    ( , ) 0=U n .  (4) 
 
At the upper free surface boundary 2D∂ , satisfying ( , , )=z x y tζ , the following 
conditions are set: 
 

( , )+ =U grad w
t

∂ζ
ζ

∂
  (5) 

 
aP P= , 
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where aP  is the atmospheric pressure. The unknown function ( , , )x y tζ  satisfies a 
certain initial condition. 
 
At the solid moving boundary 3D∂   which is described by equation 
 

( , , , ) 0,G =x y z t  
 
the following condition is set  
 

( , ) 0.G G+ =U grad
t

∂
∂

  (6) 

 
The open liquid motionless boundary 4D∂  requires certain velocity vector components 
or its function set. It should be noted that the position of boundary conditions at the 
open boundary is a delicate question because the Equations (1) – (2) are close to being 
hyperbolic. 
 
Note. 
 
Along with Euler’s equations (1) – (2) other forms are known. There are equations in 
Lagrange’s variables and in Gromeka – Lamb’s form. Equations in Lagrange’s 
variables: ,ia t  where ( 1,2,3)i i =a  are Cartesian coordinates were also suggested by 
Euler, simultaneously with Equations (1) – (2). 
 
The partial differential equations (1) – (2) have a common character. Adding 
supplementary conditions might generate some applications and special cases. The most 
commonly used conditions are the following. 
 
Potential motion. 
 
If the fluid is under potential forcing field, then 
 

,A=F grad  
 
where A  is the potential particularly, in the gravity field which acts along the 
downward vertical axis z : 
 
A = gz . 
 
For potential motion, the theorem about circulation of the velocity vector  Γ  along 
arbitrary closed liquid contours l  is applied: 
 

( , ) 0.
l

d d d
d d

≡ =∫ U x
t t
Γ   (7) 
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The circulation of velocity vector along a closed contour during motion remains 
constant. Hence, if at the initial moment the fluid was at rest ( 0)=U , then circulation 
along an arbitrary contour is identically equal to zero  for all time moments. Hence, 
owing to the Stokes’s theorem we have: 
 

( , ) ( , )
l

d rot d=∫ ∫U x U U
Σ

Σ   (8) 

 
(where Σ  is a surface having the contour l ). Because Σ  is an arbitrary surface, for all 
times, it follows that 
 
rot 0.=U   (9) 
 
The function rotU  is called vorticity. It determines the angular velocity of the rotating 
fluid volume. In this way Equation (9) denotes absence of the rotation. If motion is 
considered in a simply-connected domain, then (9) is a necessary and sufficient 
condition of the potentiality of the velocity field. In this case there is a scalar function 

( , )x tϕ  - velocity potential  
 

grad .=U ϕ   (10) 
 
Owing to the continuity equation the potential of the velocity ϕ  is a harmonic function 
satisfying Laplace equation 
 

2 2 2

2 2 2 0.≡ + + =
x y z

∂ ϕ ∂ ϕ ∂ ϕ
ϕ

∂ ∂ ∂
Δ   (11) 

 
Besides, from the momentum equation it follows that 
 

2 2 2
grad( ) 0

2
P A+ +

+ + − =
u w

t
∂ϕ υ
∂ ρ

  (12) 

 
and Cauchy-Lagrange equation is valid 
 

2 2 2
( ) ,

2
P A+ +

+ + − =
u w

t
∂ϕ υ
∂ ρ

Φ   (13) 

 
where ( )t=Φ Φ  is an arbitrary function of time. 
 
Steady motion 
 
One can construct a further simplification of the model assuming that the motion is in 
equilibrium, i.e. a velocity field does not depend on time. In this case the mathematical 
model is described by the equations: 
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0, grad ,= =Uϕ ϕΔ  
 

2 2 2
const

2
P A+ +

+ − =
u wυ

ρ
.  (14) 

 
Equation (14) is called the equation of Bernoulli. 
 
2.2. Compressible Inviscid Fluid 
 
The compressibility of a fluid is essential when we consider its motion at high velocities 
which are comparable with the speed of sound in the fluid. In this case density variation 
becomes important. Density can not be considered as known constant quantity and it 
should be considered as an unknown function. The problem becomes more complex and 
absolutely new effects and phenomena appear which do not exist for incompressible 
fluid. Equations describing the motion of compressible inviscid fluid are of the kind: 
 

1( , ) ,P+ = − +
U U U grad F
t

∂
∂ ρ

∇   (15) 

 

div( ) 0,+ =U
t

∂ρ
ρ

∂
  (16) 

   
 

( , ) 0,ds s s
d

≡ + =U
t t

∂
∂

∇   (17) 

 
( , ).P P s= ρ   (18) 

 
Thermodynamic equation (17) expresses the absence of heat exchange between water 
parcels. The entropy s  of every parcel is constant. Equation (18) which connects the 
unknown functions ,s ρ  with pressure is called the equation of state. It comes from the 
general laws of thermodynamics. A definite form of dependency is determined by the 
properties of medium. The model equations for compressible inviscid fluid (15) – (18) 
are used, as a rule, for describing gas motion. For water system they are not applied in 
their original form. On the one hand they are interesting for us as a theoretical 
development of the model and on the other one as they are similar to the shallow-water 
equations. A well-known system of the shallow-water equations which describe plane 
motion have the form: 
 

,+ + =
u u u
u g

t x y x
∂ ∂ ∂ ∂ζ

υ
∂ ∂ ∂ ∂

  (19) 

 

,+ + =u g
t x y y

∂υ ∂υ ∂υ ∂ζ
υ

∂ ∂ ∂ ∂
  (20) 
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