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Summary 
 
New flow modeling techniques currently being developed are either based on ANN, FL, 
or GA, or are part deterministic and part stochastic. Watersheds and rivers are inherently 
spatial and complex, and our understanding of flow in these systems is less than 
complete.  Many of the flow systems are either fully stochastic or part-stochastic and 
part-deterministic. Their stochastic nature can be attributed to randomness in one or 
more of the following components that constitute them: (1) system structure (geometry), 
(2) system dynamics, (3) forcing functions (sources and sinks), and (4) initial and 
boundary conditions.  As a result, a stochastic description of these systems is needed, 
and the statistical techniques are available which enable development of such a 
description. Stochastic techniques are based on either point estimation methods or 
probability distribution functions. Copulas have tremendous potential in describing 
dependence between flow variables. 
 
2B1. Introduction  
 
Atmosphere is the source of water that flows overland and in channels, even though the 
amount of water stored in the atmosphere as water vapor is small, as compared with that 
in oceans and seas, polar icecaps, lakes and streams, and ground water. The atmospheric 
water falls on the land surface, streams, lakes, ponds, and seas and oceans as 
precipitation. Part of this precipitation returns to the atmosphere through evaporation as 
water vapor, and part of it may either run off or get stored. The remainder fills in the 
depressions on the ground, meets the infiltrative demand of the soil, and runs off the 
ground to form stream flow. The infiltrated water percolates down and recharges 
groundwater and may eventually become stream flow. The final destination of all 
streams is ocean, so streamflows finally reach seas and oceans. This cyclic movement of 
water from the atmosphere through precipitation to the land, through stream flow to the 
ocean, and through evaporation and evapotranspiration back to the atmosphere is called 
the hydrologic or water cycle. The movement of water, of course, follows devious paths 
and occurs in different directions. The flow of water in watersheds and rivers represents 
one component of this cycle, and constitutes the subject matter of this chapter. 
 
3B2. Flow in Watersheds and Channels 
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A watershed is comprised of land areas and channels and may have lakes, ponds or 
other water bodies, depending on its size. The flow of water on land areas occurs not 
only over the surface but also below it in the unsaturated zone immediately below and 
further below in the saturated flow. The water over the land surface flows as overland 
flow; it occurs in both directions, longitudinal and transverse but its predominant 
direction is longitudinal. Thus, although overland is two-dimensional, its one-
dimensional approximation is acceptable for most cases of practical interest. The flow 
in the unsaturated zone, called unsaturated flow, occurs predominantly vertically 
downward. The flow in reality is three dimensional but its one-dimensional or at most 
two-dimensional approximation suffices for most cases of interest. Of course the 
predominant direction of unsaturated soil moisture flow may change as the degree of 
saturation changes. When the soil becomes saturated the predominant flow direction 
changes and becomes longitudinal. The flow in the saturated zone, groundwater flow or 
baseflow, occurs principally longitudinally. In this case also, the flow is three-
dimensional but its two dimensional or even one dimensional approximation will be 
adequate for practical purposes. When water returns to the atmosphere, it moves upward 
and the flow is three-dimensional. However, the principal direction is vertically upward. 
The return of water to the atmosphere as vapor will not be included in this chapter.   
 
The flow of water in channels, streams and rivers occurs primarily and predominantly in 
the longitudinal direction. Locally, the flow may occur in the transverse direction as 
well as in the vertical direction. Theoretically the flow is three dimensional but its one-
dimensional approximation is adequate. The term channel is used in a broad sense and 
includes rivers, streams, bayous, brooks, creeks, canals, sewers, partially flowing pipes 
and tunnels, gutters, borders, and furrows. 
 
 It is clear from the above discussion that the movement of water in watersheds and 
rivers occurs in virtually all directions and is three-dimensional. The discussion in this 
chapter will be confined to one dimensional flow in the predominant-longitudinal-
direction.   
 
There is a multitude of flow modeling techniques which can be broadly classified as 
hydrologic and hydraulic. Hydrologic modeling is based on a spatially lumped form of 
the continuity equation, often called water budget or balance, and a flux relation 
expressing storage as a function of inflow and outflow (Singh, 1988). Since coupling of 
these two equations leads to a first order ordinary differential equation, only an initial 
condition is needed to solve this equation. This equation does not explicitly involve any 
spatial variability and expresses the flow variable as a function of only time.   
 
Hydraulic modeling is based on the St. Venant equations or simplifications thereof. A 
vast amount of literature dealing with applications of these equations or their 
simplifications to flow modeling is available (Singh, 1996; ASCE, 1996). In a 
watershed there usually is a network of overland flow planes, river channels and 
tributaries, that is, each river may have a number of tributaries. For purposes of 
applying these equations, a given river may be divided into a number of reaches. The 
hydraulic equations are applied to each reach having its own drainage area and the 
system of equations corresponding to all the reaches are solved simultaneously. When 
the full St. Venant equations are applied, the computational demands may be formidable 
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and the solution may be inefficient and may incur a large accumulated error. This may 
explain the reason for the increasing popularity of simplified hydraulic models. These 
simplified models include kinematic wave, diffusion wave, gravity wave, and quasi-
steady state. Linearized forms of the St. Venant equations are also popular for flow 
modeling (Dooge, 1980).         
 
For most problems of practical interest dealing with flow movement, analytical 
solutions for either full St. Venant equations or their simplified forms are not tractable 
and numerical solutions are therefore employed. Numerical methods to obtain solutions 
can be classified as: explicit finite difference, implicit finite difference, finite element, 
and boundary fitted coordinate (Singh, 1996). In each class there are many different 
types of methods. Different classes of methods are useful for different conditions.   
 
4B3. Governing Equations 
 
The laws that govern the movement of water over and below the ground or in rivers are 
the conservation of mass, momentum, and energy. For the movement of water in 
unsaturated and saturated zones below the ground, the momentum plays a relatively 
minor role and hence its conservation is not important. The conservation of energy is 
expressed by an appropriate flux law. For surface flow, the conservation of mass is 
expressed as a continuity equation, and that of momentum as an equation of motion. 
Depending on the flow conditions, these equations are expressed in a variety of forms, 
as will be clear from the following discussion. 
 
3.1. Surface Flow 
 
For simplicity, only the one-dimensional form of the governing equations using a 
control volume is given here. The continuity equation can be expressed as 

( , ) ( , ) ( , )A Q q x t i x t e x t
t x

∂ ∂
∂ ∂

+ = − −  (1) 

the momentum equation as 

0 f
( )( )( )u u h q i u vu g g S S

t x x A
∂ ∂ ∂
∂ ∂ ∂

− −
+ + = − −  (2) 

and the energy equation as 

0 f
( / )( )

2
u u h u v v uu g g S S q
t x x A

∂ ∂ ∂
∂ ∂ ∂

−
+ + = − +  (3) 

where A  is the flow cross-sectional area, Q  is the discharge (volumetric rate = .u A ), u  
is the average flow velocity, h is the depth of flow, 0S is the bed slope, fS is the 
frictional slope, q is the lateral inflow per unit length of flow, i  is the infiltration per 
unit length, e  is the evaporation rate and other abstractions per unit length, v is the 
velocity of lateral inflow in the longitudinal direction, x is the distance in the 
longitudinal direction, and t is time. Except for the term expressing the influence of 
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lateral inflow or outflow, Eqs. (2) and (3) are equivalent. Therefore, only Eq. (2) will 
henceforth be referred to. 
 
Equation (1), in conjunction with either Eq. (2) or (3), can be employed to model 
surface flows on plains and/or in channels. Two popular approximations of Eq. (2) are 
the diffusion-wave and kinematic-wave approximations (Lighthill and Whitham, 1955; 
Dooge, 1973; Singh, 1996), which can be expressed, respectively, as follows: 

0 f
h S S
x

∂
∂

= −  (4) 

0 fS S=  (5) 

With use of a uniform flow formula such as Manning’s or Chezy’s, fS   can be 
expressed as 

2

f a
uS
R

β=  (6) 

where 21/ Cβ = and 1a =  for Chezy’s equation; 2
mnβ =  and 4 / 3a =  for Manning’s 

equation; C  is Chezy’s roughness coefficient, mn is Manning’s roughness factor, and 
R  is the hydraulic radius (  /A P= , P = wetted perimeter). 
 
Substitution of Eq. (6) into Eq. (5) and recognizing the unique relation between R and 
h leads to 

,     0    or    ,     1m nu h m Q h n mα α= > = = +  (7) 

where   0.5m =  and 0.5
0  ( )C Sα =  for Chezy’s equation, and   2 / 3m =  and 

0.5
0 m  ( ) /S nα = for Manning’s equation. Equation (7) is normally applied to wide 

rectangular cross-sections. Otherwise, Q can also be expressed in terms of A  in place 
of h . The kinematic-wave approximation hypothesizes a unique relationship between 
the flux (average velocity), concentration (depth), and position. Thus, this 
approximation can also be expressed in forms different from Eq. (7), as shown by 
Beven (1979).  
 
Woolhiser and Liggett (1967) showed that the kinematic wave approximation would be 
adequate if the kinematic wave number K, was greater than or equal to 20. K can be 
expressed as  2

0 0 0 0( ) /( )K S L h F= where 0h is the normal depth, 0L is the flow plane 

length, 0F is the Froude number for normal flow 0.5
0 0/( )u gh= , and 0u  is the normal 

velocity, This criterion is satisfied if the channel has a moderate slope and the flow is 
unsteady gradually varying and has little backwater effects (Ponce and Simons, 1977; 
Ponce et al., 1978; Hunt, 1984; Singh, 1996). The diffusion wave or non-inertia wave 
approximations are an improvement over the kinematic wave approximation because 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

HYDROLOGICAL SYSTEMS MODELING – Vol. I - Mathematical Modeling of Flow in Watersheds and Rivers- Vijay P. Singh 

©Encyclopedia of Life Support Systems (EOLSS) 

they are capable of accommodating backwater effects (Akan and Yen, 1977; Hager and 
Hager, 1985; Dooge and Napiorkowski, 1987; Singh, 1996). Likewise, gravity wave 
approximations perform well when inertial effects dominate over slope terms (Singh, 
1996). These simplified approximations are adequate in most cases of practical interest 
(Yen, 1979, 1982; Marsalek et al., 1996; Singh, 1996).      
 
If the control volume is extended to the scale of a watershed or a channel segment, then 
the flow variables are lumped or integrated in space and only their temporal variability 
is retained. Thus, integration of Eq. (1) in space leads to 

( ) ( ) ( )dS Q I t f t E t
dt

= − − −  (8) 

where 

2 2

1 1

2 2

1 1

2 1 ,     ( , ),     ( , )     ,

 ,         

x x

x x

x x

x x

S A dx Q Q x t I Q x t q dx

f i dx E e dx

= = = +

= =

∫ ∫

∫ ∫
 

where S is storage or volume, and Q is discharge as volumetric rate. Equation (8) is a 
volume balance or water budget equation with two unknowns, S andQ . Its solution 
requires another equation relating S to Q , I , and/or other variables. A very general 
relation between S  and I and Q  is (Singh, 1988): 

0 0
( , ) ( , )

j lM N

j l
j l

d Q d IS a Q I b Q I
dt dt= =

= +∑ ∑  (9) 

where a  and b are coefficients, and M and N are some integers. A special case, 
involving one of the most frequently used relations in hydrology, is  ( )S S Q= : 

,     S KQ S kQβ= =  (10) 

where K is the storage parameter (lag time for = 1β ), and k and β  are parameters. Eq. 
(10) can be derived from the momentum equation. As an example, consider Eq. (7) 
with   1n = . By multiplying both sides by 2 1~   -  dx x x  and recalling that 

 . .1S dx h= and Q  is volumetric flow rate, Eq. (10) results immediately. 
 
3.1. Unsaturated Flow 
 
In the unsaturated zone below the land surface, part of the pore space is occupied by air, 
so the degree of saturation is to be taken into account when dealing with unsaturated 
flow. The moisture content θ  in the medium (volume of water per unit volume of 
porous medium) is a function of the capillary pressure < 0ψ , and likewise is the 
medium’s hydraulic conductivity ( )K ψ . The basic governing equations for unsaturated 
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flow are the continuity equation and a flux law given by Darcy’s equation in lieu of the 
momentum equation or energy equation. This flux law can also be derived from energy 
conservation considerations. The three-dimensional continuity equation, under the 
assumption of incompressible water, can be written as 

yx zqq q
x y z t

∂∂ ∂ ∂θ
∂ ∂ ∂ ∂

+ + = −  (11) 

and Darcy’s equation as 

( ) ,     , , ;    { , , }s s x y z
hq K s x y z q q q q
s

∂ψ
∂

= − = =  (12) 

where h  is the hydraulic head and sq is the flux in the s direction. Substituting Eq. (12) 
into Eq. (11) and recalling that     h zψ= + , one gets 

( ) ( ) ( ) ( )

( ) ,

( )

x y z zK K K K
x x y y z z

C
t

C

∂ ∂ψ ∂ ∂ψ ∂ ∂ψψ ψ ψ ψ
∂ ∂ ∂ ∂ ∂ ∂

∂ψψ
∂

∂θψ
∂ψ

⎛ ⎞⎛ ⎞ ⎛ ⎞+ + +⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

=

=

 (13) 

where ( )C ψ is the specific moisture capacity. This is the well-known Richards equation 
(Richards, 1931). Based on simplifications of porous media properties (anisotropy and 
heterogeneity) and the nature of flow, a number of simpler versions can be derived 
(Singh, 1997b).  
 
A popular approximation is the kinematic wave approximation which assumes a unique 
relation between flux and soil moisture content as: 
 

( ),     , , ;    { , , }s s x y zq K s x y z q q q qθ= = =  (14) 
 
On the other hand, if the control volume is extended to a soil element, then spatially 
lumped equations can be derived. For example, Eq. (11) can be integrated over space 
and expressed in the form of a water balance equation as 

s
( ) ( ) ( )dS t f t f t

dt
= −  (15) 

where ( )S t is the water stored in the soil element, s ( )f t is the seepage rate from the 
element, and ( )f t is the infiltration rate. The seepage rate is analogous to steady 
infiltration rate and is a function of soil characteristics. For most soils, this rate has been 
tabulated and is given in standard hydrology textbooks. If the initial storage space 
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available in the element is 0S , then the change in the water storage space at any time t  
is 

0 0
( ) ( )  [ ( ) ( )

t
sW t S S t f t f t dt= − = −∫  (16) 

which is an integral expression of continuity.  
 
Another relation between ( )f t  and ( )S t  in lieu of Eq. (12), proposed by Singh and Yu 
(1990), can be expressed  as 

0

[ ( )]( ) ( )
[ ( )]

m

s n
a S tf t f t

S S t
= +

−
 (17) 

where ,  ,  and a m n  are positive real constants and are determined empirically. Equation 
(17) is a generalized flux relation for infiltration.   
 
3.3. Saturated Flow 
 
The governing equations for saturated flow are the continuity equation and the flux law 
specified by Darcy’s equation. A three-dimensional form of continuity equation for 
incompressible flow is 

yx z
s

qq q hS
x y z t

∂∂ ∂ ∂
∂ ∂ ∂ ∂

+ + = −  (18) 

where sS is the specific storage for confined formations, or specific yield divided by the 
saturated thickness for unconfined formations. Darcy’s equation can be written as 

,     , , ;    { , , }s s x y z
hq K s x y z q q q q
s

∂
∂

= − = =  (19) 

where sK is the saturated hydraulic conductivity in the s  direction. Substitution of Eq. 
(19) into Eq. (18) gives the general flow equation, which specializes-depending on the 
simplifications of porous media properties and the nature of flow-into a number of 
equations, such as the Laplace equation, the diffusion equation, the Theis equation, the 
Poisson equation, the Boussinesq equation, and so on (Singh, 1997b). 
 
- 
- 
- 
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