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Summary 
 
The development of desalination plants in recent years and the estimation of increased 
trends in desalination directions are increasing the interest in understanding desalination 
plants currently in use. The cost of desalinated water is still high for many people, so 
there is a need to learn how to reduce costs as well as understand how the techniques 
work before trying to develop new technologies.  
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This chapter describes the subject of Multi-Effect Distillation (MED). The technology, 
which belongs to the field of evaporation techniques, is explained in detail and different 
designs are included. Design equations are also given based on heat balance, flow 
configuration and heat transfer mechanisms in the system. Related subjects such as 
energy needed, the energy source, environmental issues, operational technologies and 
most common problems are also explained. A comparison with other techniques and 
recommendations for future improvements are given. 
 
1. Introduction 
 
The demand for fresh water has increased significantly since 1990 for many reasons, 
including, on the one hand, the increase in world population accompanied by the 
increase in standards of living, and, on the other hand, global warming followed by 
climate changes and desertification. Governments and water industries are seeking 
different solutions for better utilization of available water, thereby increasing the 
efficiency of growth crops, solutions for better wastewater treatment, and the 
development of new water sources and improved desalination techniques. 
 
Many desalination techniques were considered over the years. Some survived the 
economic battle and are currently in use in different places around the globe. Others did 
not make it, yet are being reviewed from time to time in order to seek possible better 
techniques. Two main directions are used for industrial water production: thermal 
techniques and membrane-based techniques. Thermal techniques include the freezing 
technique that was abandoned and current techniques that are still responsible for more 
than 50% of the world desalination consumption: Multi-Stage Flash (MSF) evaporation, 
which is still the most commonly used desalination technique, and Multi-Effect 
Distillation (MED), with a variation as vapor, thermal or mechanical compression, 
where the differences are in energy source and recovery (Awerbuch, 1997). 
 
The MED technique is the most sophisticated evaporation desalination technique (Ophir 
& Weinberg, 1997). It is based on know-how in fluid mechanics of falling films, as well 
as on the understanding of heat transfer mechanisms and the phenomena of a double 
film of condensing vapor on one side of the heat transfer surface and the evaporation of 
falling film without boiling on the other side. This chapter aims at describing the 
technology related to the MED process.  
 
2. Desalination Techniques 
 
Many desalination processes were proposed over the years; only a few survived the 
crucial road to produce the cheapest, yet most valuable, product on earth – water. The 
most successful techniques are summarized briefly below (Porteous, 1975; Buros et al., 
1981; Semiat, 2000; El-Dessouky & Etouney, 2002). 
 
2.1. Membrane Processes 
 
Membrane techniques for water desalination are based on different types of molecular 
level filters – membranes. The most common technique that aims at taking over the 
entire market of desalination processes is reverse osmosis.  
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2.1.1. Reverse Osmosis (RO) 
 
Desalination with reverse osmosis membranes is a process whereby saline water under 
pressure is transferred along a membrane. The pressure applied is high enough to 
overcome the osmotic pressure of the dissolved salt in feed solution. The osmotic 
pressure of a solution is proportional to the concentration of the dissolved matter, salts 
in water, starch or sugar, etc. (Faller, 1999). Salts rejected by the membrane are 
removed from the membrane with the flow of concentrated solution while fresh salt 
solution is fed to the membrane. The permeate – the fresh water product – exits the 
lower pressure side of the membrane.  
 
2.1.2. Nano-Filtration 
 
Nano-Filtration is based on a loose membrane that allows partial passage of monovalent 
ions (mainly Na+ and Cl-) while partially rejecting the bivalent ions. It is used mainly in 
the desalination of brackish water of low salt concentration. Currently, the cost of these 
membranes is similar to the cost of RO membranes, so there is not much incentive to 
prefer these membranes over RO membranes.  
 
2.1.3. Ultra-Filtration and Micro-Filtration  
 
Ultra-Filtration and Micro-Filtration membranes contain large pores that allow the 
passage of free salts while preventing the passage of different sized suspended matter, 
down to nano-sized particles and colloids passing through the membranes, depending 
on pore size. These membranes are used mainly for wastewater treatment and have 
started to take their place in the pre-treatment of water along with other desalination 
techniques. 
 
2.1.4. Electro-dialysis  
 
Electro-dialysis is based on the application of an electrical field across a pair of ion-
selective membranes, causing the different ion salts to move through the membranes 
into a concentrated solution, leaving behind a diluting solution. Here, unlike other 
desalination technologies, the salts are removed from the feed water. The feed water 
should be free of suspended solids, organic matter and non-ionic contaminants that 
accumulate in the product (Thampy et al., 1999). 
 
While reverse osmosis may be used for all types of salt water, the nano-filtration and 
electro-dialysis techniques are more suitable for brackish water. 
 
2.2. Evaporative Techniques 
 
Traditionally, evaporation techniques, especially MSF, have controlled the market of 
desalination techniques. Since 2004,, this trend has changed since reverse osmosis has 
proven to work properly and consume less energy. The question is still the final cost of 
the product, while preserving the environment. Evaporation techniques not only stand 
alone, but are now being considered as membrane evaporation techniques on the one 
hand and possibly a second stage for increasing recovery following RO desalination, 
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approaching zero discharge. These trends still have long way to go before 
implementation. 
 
2.2.1. Multi-Stage Flash 
 
Multi-Stage Flash (MSF) distillation is based on condensing low-pressure steam as a 
heat source for the evaporation of seawater. It is still considered the simplest and most 
common technique in use. It has been in operation commercially for more than 60 years 
(Awerbuch, 1997). The technique is based on passing seawater through long, closed 
pipes passing through a series of flash chambers where hot seawater allows flashing 
along the bottom of the chambers. Vapor from the flash chambers heat the feed water 
flowing in the pipes. More heat is added in order to increase the temperature of the feed 
water to the initial high temperature, around 110oC. This is done with the use of low-
pressure steam, usually taken from a back-pressure turbine in a power station. The 
vapor condenses on the heating pipes and is pumped out as product. Usually, the 
concentrated brine is recycled with the feed to improve recovery ratio. Part of it is 
pumped out to sea. 
 
2.2.2. Multi-Effect Distillation 
 
Multi-stage evaporation comes from the chemical industry where water or solvent must 
be removed in order to concentrate a product in solution (Figure 1; McCabe et al., 
2001). The evaporated liquid in the chemical industry is usually not the product, except 
for cases where the solvent is recovered from a certain reaction. The evaporation 
process consumes a great deal of energy. The need to save energy was the basis for the 
development of this multi-stage process, whereby more equipment (investment) is 
required in order to reduce the overall amount and cost of energy consumed. In most 
cases, the process involves 2-4 stages, sometimes called effects, and has been used for 
more than a century for solution concentration, crystallization, solution purification, etc. 
Since 1950, it has been used for seawater desalination, yet in the water industry it 
requires between 2-16 stages. Multi-Effect Distillation (MED) is more energy efficient 
than other evaporation techniques, including the Multi-Stage Flash system (Awerbuch, 
1997). It is also considered to be more sophisticated. A low-temperature source of 
energy is used in most cases to feed the process. In most industrial cases, this is spent 
steam at a slightly elevated pressure exiting from a steam-operated power station, a 
source of heat that is available in refineries, or any low-level steam or hot fluid from 
other sources (Ophir & Lokiec, 2004). 
 
The schematic of a horizontal tube Multi-Effect MED unit is presented in Figure 2 (IDE 
schematic view, old Internet publication). The steam enters the plant and is used to 
evaporate heated seawater. The secondary vapor produced is used to generate tertiary 
steam at a lower pressure. This operation is repeated along the plant from stage to stage. 
The primary steam condensate is returned to the boiler of the power station since it is of 
extremely high quality that is needed for turbine steam production. The MED technique 
is based on double-film heat transfer. Latent steam heat is transferred at each stage by 
steam condensation through the heat transfer surfaces to the evaporated falling film of 
seawater. The process is repeated up to 16 times or more in existing plants between the 
upper possible temperature and the lower possible cooling water, which depends on 
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seawater temperature used for cooling the water. The product water is the condensate 
that accumulates from stage to stage. A vacuum pump/compressor is used to maintain 
the gradual pressure gradient inside the vessel by removing the accumulated non-
condensable gases together with the remaining water vapor after the final condensation 
stage. The pressure gradient along the MED effects is dictated by the saturation pressure 
of the feed stream and the saturation pressure of the condensing steam exiting the last 
stage and is condensed by cooling with seawater. Typical pressure gradients of 5-50 kPa 
across the system (less than 5 kPa/stage) are typical.  
 

 
Figure 1. Schematic view of industrial Multi-Effect evaporation (McCabe et al., 2001). 

 

 
Figure 2. Schematic view of a horizontal tube Multi-Effect Distillation plant (IDE 

Design, Internet publication). 
 
Steam condensation inside horizontal tubes and seawater evaporation on the outer side 
is the heart of one of the most common MED processes. Seawater is allowed to fall 
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down a tube bundle. Heat transfer on both sides of the heat transfer area is considered 
highly efficient due to the low resistance of the thin falling films, which allows efficient 
operation with a low temperature difference across the tube walls. The low temperature 
difference is limited by the increasing boiling point elevation due to the increase in salt 
concentration while evaporating part of the water.  
 
It is also limited since at too high fluxes, the film starts to boil, nucleating bubbles, 
causing dry spots that may lead to salt precipitation. This, of course, should be avoided. 
The low temperature difference across the heat transfer surfaces allows designing a 
large number of effects between the steam temperature at the first stage and the 
temperature of the cooling seawater at the other side.  
 
More stages increase the performance ratio, or the GOR – Gain Output Ratio, which is 
actually the quantity of tons of water produced per ton of initial steam while reducing 
energy consumption of the process. The GOR in MED, which depends mainly on the 
initial steam temperature, can reach 15, which is higher than the maximum value of 10 
for MSF. Therefore, energy/thermal efficiency is better for MED than it is for MSF 
(Ophir & Weinberg, 1997). 
 
The economy of design and operation is dictated mainly by the availability of a source 
of low-cost energy. In this case, operational conditions may lead to the choice of low-
cost materials and heat transfer surfaces when corrosion problems are minimized, while 
maintaining low probability of CaSO4 precipitation on the tubes. Of course, the plant 
design cannot tolerate future changes in the cost of energy and materials. 
 
The experience of IDE in MED plants has led to operation at low temperature 
differences across the heat transfer surfaces at good wetting of the surfaces in order to 
prevent scaling. Under these conditions, a plant can be operated below 70oC using 
aluminum tubes, while operating below the saturation conditions of gypsum, involving 
up to 50% recovery.  
 
Corrosion rates are very low below this temperature, there is no need to remove oxygen, 
and cleaning is less frequent. Operating MED plants usually produce less than 30,000 
m3/day. Several trains of MED stages are built in parallel to each other to enable larger 
overall plant capacity. 
 
Many possible MED system designs are available as horizontal or vertical tubes or flat-
sheet heat exchangers during a stage. The stages may be arranged horizontally or 
vertically, and the seawater flow can be co-current or counter-current with the flow 
direction of the steam produced.  
 
These design variations affect water pumping in the system, which is related to part of 
the energy losses, and they affect the occasional cleaning of the heat exchangers. 
Specific process designs are sometimes developed for specific site conditions. Figure 3 
illustrates a schematic view of a vertical tube evaporator design. Figure 4 shows a recent 
installation of four parallel 25,000m3/day MED units in  
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Figure 3. Schematic view of a vertical tube evaporator design (Pepp et al., 1997). 
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Figure 4. Parallel IDE MED units, 4 x MED 25,000m3/day Units, Tianjin, China. 
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