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Summary 

 

The interaction of macroscopic objects with electromagnetic fields can be well-

described using Faraday's laws and Maxwell's equations. In this approach, charges and 
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currents are subject to a smoothly varying force, and follow well-defined paths. These 

descriptions, however, are no longer adequate when applied to microscopic particles, 

such as electrons. The electron's behavior must be described by a quantum mechanical 

wavefunction, which only provides a probabilistic description of the electron's 

trajectory. Moreover, the interaction can no longer be seen as a continuous process. 

Instead, charged particles interact by emitting and absorbing discrete quanta of the 

electromagnetic field, known as photons. Special relativity allows the conversion 

between energy and mass, and when relativity is combined with quantum mechanics, 

creation and annihilation of particle-antiparticle pairs results. The Dirac equation, which 

is the result of constructing a wave equation for the electron which obeys special 

relativity, provides a natural explanation not only of the existence of antiparticles, but 

also of properties such as spin. In order to interpret the equation for a system where the 

number of particles is not constant, it is necessary to move away from classical wave 

mechanics to a field theory. Fields represent the particles such as electrons and photons, 

and operators acting on these fields return the numbers and properties (such as 

momentum and polarization) of the particles concerned. Gauge invariance requires that 

the physical properties of a system do not change when parameters of the underlying 

field theory (such as the phase) undergo arbitrary changes. Imposing the requirement of 

such invariance on a theory ensures that meaningful calculations can be performed 

which are not subject to infinite corrections. In the case of the Dirac equation, the 

requirement of local gauge invariance is identical to requiring that the particles undergo 

interactions with a structure which is exactly equivalent to that of electromagnetism. 

 

1. Introduction 

 

Quantum electromagnetism, or quantum electrodynamics as it is more often known, 

arises from the marriage of a quantum mechanical approach to the description of nature 

with the requirements of special relativity. Classically, charged particles follow well-

defined trajectories, and interact with each other as a result of the Coulomb force 

between them, which can be parameterized as an electric field. In quantum mechanics, 

the defined trajectories are replaced by wave functions, which give the probability 

density for a particle being found at a particular place and time; the smooth potential is 

retained. However, there are a number of reasons for wishing to incorporate the 

principles of special relativity. First, all physical process should obey Lorentz 

invariance, and not be dependent on a particular frame of reference. Second, when low-

mass particles such as electrons are studied, small amounts of energy can result in 

velocities comparable with the speed of light, where a classical expression for kinetic 

energy, for example, does not apply. Finally, even at modest speeds, charged particles 

experience the effects of both electrostatic and magnetic fields, and again a consistent 

description should be employed which is correct in all frames of reference. Quantum 

electrodynamics (QED) provides such a description, and results in the quantization of 

the field, in addition to the quantum mechanical portrayal of the particle’s behavior. 

(This is sometimes known as second quantization.) The quanta of the electromagnetic 

field are photons. Charged particles interact by the emission and absorption of one or 

several virtual photons, the momentum transferred by the photons corresponding to the 

action of a force between the particles. 
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In this chapter, after a brief description of the notation which is employed to describe 

relativistic quantities, the elements of a relativistic description of quantum 

electromagnetism are successively introduced. First, a relativistic expression is used for 

the relationship between energy and momentum, in place of that employed in the 

Schrödinger equation, and used to derive the Klein-Gordon equation for a free particle. 

Problems with the interpretation of this formalism are discussed, and an alternative, the 

Dirac equation, derived. It is shown that this requires a 4-component wave function, 

which can only be satisfied with the introduction of an intrinsic spin of 1
2  and the 

existence of antiparticles. In a brief interlude, the properties of angular momentum and 

spin in quantum mechanics are outlined, and the Pauli matrices introduced. Dirac’s 

association of holes in the vacuum sea with antiparticles will be contrasted with 

Feynman’s more modern interpretation of antiparticles, and their representation in 

Feynman diagrams. 

 

Next, interactions are introduced, through the use of the vector electromagnetic 

potential. The use of a Lagrangian approach to perform calculations in quantum 

mechanics is described, albeit rather briefly, and fields are introduced to allow for 

changing numbers of particles and quantized interactions. The principles of gauge 

invariance are briefly outlined, along with renormalizability, and it is shown that 

electromagnetic-like interactions are a natural consequence of demanding local gauge 

invariance. Finally the relationship between QED and other gauge interactions is 

summarized. 

 

The last section of the chapter discusses experimental evidence for the validity of 

quantum electrodynamics, through the comparison of precision measurements and 

calculations of the magnetic moment of charged leptons such as electrons and muons. 

 

2. Notation 

 

Four-vectors are a convenient way of representing the various quantities which are 

related by Lorentz transformations. Examples of such quantities are time and space; 

energy and momentum; electrostatic and magnetic vector potential. The space-time 4-

vector is thus written as 
 

   , , , ,x t x y z t  r
 .          (1) 

 

Note the use of the Greek superscript, , to indicate that x

 is a 4-vector.  ranges from 

0, representing the scalar part (here, t) to 3; components 1 to 3 represent the vector part 

r). Note also that it is conventional to use units such that c, the speed of light, has the 

value 1, and so does not appear explicitly in the formula for x

. 

 

The dot-product of two (ordinary) vectors is rotationally invariant. For example 
 

i ia b a b .                 (2) 
 

Note here that a Roman superscript, i, is used to index the components of a 3-vector; i 

takes a value from 1 to 3. Note also the use of the Summation Convention – where a 
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subscript is repeated, this implies the summation over all possible values. Explicitly, 

then,  
 

1 1 2 2 3 3

1,3

i i i i

i

a b a b a b a b a b



     a b .            (2a) 

 

The dot-product of two 4-vectors is similarly a Lorentz invariant. However, in this case, 

we must define the product of 4-vectors a

 and b


 as 

 
0 0 1 1 2 2 3 3a b a b a b a b a b a b a g b        

   ,          (3) 

 

where      a g a a g  

   ,              (4) 

 

and g is the metric tensor: 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

g

 
 

 
 
 

 

 .                (5) 

The summation convention in this case is that repeated Greek indices, one being 

superscript and the other subscript, are summed over the values 0 to 3 as indicated. 

 

We must also introduce the differential operator 

 

, , , , ,
t x y z t

      
     

      
  .  (6) 

 

For consistency with (4) above, we also have 

 

,
t

 
   

 

  .                      (6a) 

 

Operators used in quantum mechanics do not always commute. That is, for two 

operators Â  and B̂ , the effect of ˆ ˆAB  is not necessarily the same as ˆB̂A . The 

commutator of Â  and B̂  is defined as 

 

ˆ ˆ ˆˆ ˆ ˆ,A B AB BA   
 

,              (7) 

 

while the anticommutator is 

 

 ˆ ˆ ˆˆ ˆ ˆ,A B AB BA  .               (7a) 
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3. Relativistic Wave Equations 

 

3.1. From Schrödinger to Klein-Gordon 

 

The familiar low-energy wave equation is Schrödinger’s equation 

 

 
2

2
E i V

t m

 
    

  
r


    (8) 

 

where  is the wave function, E is the total energy, V the potential energy, m the mass 

of the particle concerned and  is Planck’s constant h divided by 2. When one 

considers a “generic” plane wave form for the wave function (with wave-vector k and 

angular frequency ) 

 

 
 i Et

i t
e e




 
 

 
p r

k r
               (9) 

 

one can see that the first term on the right hand side of (8) corresponds to the classical 

expression for kinetic energy, 
2

2

p
T

m
 , where p is the magnitude of the particle’s 

momentum, p. Schrödinger’s equation is simply an expression for the total energy 

E T V                  (10) 

 

where operator substitutions have been made for E and p 

 

ˆ ˆ;E i i
t

 p



 .               (11) 

 

(In subsequent expressions, the standard convention will be adopted of assuming that 

natural units are used where , like c, is equal to one and so does not appear explicitly 

in the formalism.) 

 

Equation (8) is clearly not Lorentz invariant, containing derivatives which are first order 

in t but second order in r. The correct relativistic relationship between energy and 

momentum is 
 

2 2 2E p m  .                 (12) 

 

(For now, the potential energy term, corresponding to interactions, will be ignored. This 

will be re-introduced later.) Employing the operator substitutions of (11) in (12), we 

therefore have 
 

 
2

2 2i i m
t

 
   

 
                 (13) 
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or  2 0m   

  .                (13a) 

 

This manifestly covariant expression is known as the Klein-Gordon equation. However, 

Dirac pointed out a problem with this formalism. It is second order in time, which 

means that  cannot be interpreted as a wave function in the normal way. In particular, 

the probability density should be given by
*

*i
t t

  
 

  

 
   rather than by *  , and 

such an expression is not guaranteed to be positive definite. Though with an appropriate 

interpretation of the wave function, the Klein-Gordon equation can be used to give a 

perfectly adequate description of spinless particles, such concerns led Dirac to search 

for an alternative relativistically invariant wave equation. 

 

3.2. The Dirac Equation 

 

Dirac suggested that it should be possible to write down a Lorentz invariant theory 

which is first-order in t. One could consider using the square root of (12), 

 
0 2 2p m  p .                  (14) 

 

However, it is clear that p
0
 and p are not treated in an equivalent fashion. Also, taking 

the square root of an operator presents problems. Dirac therefore proposed a linear 

Hamiltonian (or energy operator) 

D
ˆ ˆH i m

t


   


α p  .                  (15) 

 

Note that  must be a vector, to preserve rotational invariance. Also, for a wave 

function in an eigenstate of energy, applying the Hamiltonian (15) must return a value 

compatible with the expression for energy in (12) above. Applying 
DĤ  twice, we obtain 

 

   2 2 2ˆ ˆm m E m      α p β α p β p              (16) 

 

i.e. 
  

     

1 2 3 1 2 3

1 2 3 1 2 3

2 2 2
1 2 3 2

p p p m p p p m

p p p m

     

   

       
…  (16a) 

 

This must be true for any wave function, with any value of p
i
, so we may equate 

coefficients: 

 

of        
2 2 2

1 2 3 2 2 2 2 2

1 2 3, , , 1; 1; 1; 1p p p m          (17) 

 

of    1 2 2 1

1 2 2 1 since  commute 0i jp p p p p p       . (17a) 
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Similarly, other pairs of i, j must anticommute;   , 0  for  i j i j   . Overall, this 

can be summarized as 

 

    2, 2 ; , 0 ; 1i j ij i          (17b) 

 

where we are employing the Kronecker delta symbol, which has a value of 1 if its two 

arguments are identical and 0 otherwise. Such relationships are clearly not possible if i 

and  are ordinary numbers. 

 

In fact, Dirac showed that these relationships cannot be satisfied by 22 or 33 matrices 

either. The simplest possibility is 44 matrices. A possible set of such matrices is given 

by 

 

;
i

i

i

   
    

  

0 σ I 0
α β =

σ 0 0 I
  (18) 

 

where the i are the 22 Pauli matrices, which will be defined in the next section, 

0 0

0 0

 
  
 

0  and I is the 22 unit matrix 
1 0

0 1

 
 
 

. 

 

Now the Dirac equation (15) can be written 

 

 ˆi m
t


  



ψ
α p β ψ .             (19) 

 

Since i and  are 44 matrices, this implies that ψ  must be a 4-component column 

vector. The significance of the 4 components of the wave function will be discussed in 

Section 5, after we have examined the representation of angular momentum in quantum 

mechanics. 

- 

- 
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