HYDROGEN FROM BIOMASS (1)

Jun Miyake

Tissue Engineering Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan

Keywords: Photosynthetic bacteria, biomass, photo-hydrogen production, sunlight, organic waste water

Contents

- 1. Introduction
- 2. Photobiological Hydrogen Production by Photosynthetic Microorganisms (Bacteria)
- 2.1 Photobiological Hydrogen Production from Organic Acids
- 2.2 Photobiological Hydrogen Production from Carbohydrates
- 2.3 Photobiological Hydrogen Production from Sulfuric Compounds
- 2.4 Photobiological Hydrogen Production from Food Waste
- 2.5 Photobiological Hydrogen Production from Organic Wastewater
- 2.6 Photobiological Hydrogen Production Using Sunlight
- 3. Biological Hydrogen Production by Non-Photosynthetic Microorganisms

4. Photobiological Hydrogen Production by Mixed Culture with Non-Photosynthetic Bacteria

Glossary

Bibliography

Biographical Sketch

Summary

Hydrogen, which does not liberate carbon dioxide during combustion, is considered to be an important alternative energy resource of the 21st century.

However, conventional industrial hydrogen production technology requires the immediate or indirect consumption of fossil fuels resulting in CO_2 emission and fuel exhaustion.

Hydrogen can be produced from biomass using biological process. Biomass has a key role to play in a global energy supply in the future.

However, only a small portion of biomass is presently used, and it is the unused source that should be used effectively. Biological hydrogen production could be a potentially environmentally acceptable energy production method.

In particular, photo-hydrogen production by photosynthetic bacteria has the advantage that with sunlight as the energy source, hydrogen and biomass can be produced simultaneously.

This feature is effective for the promotion of environmentally acceptable energy production technology aimed at producing hydrogen from organic wastewater.

1. Introduction

Biomass is produced by the actions of air, water, and soils using sunlight as energy source; it is a renewable source of clean energy. However, only a small portion of biomass is presently used, and it is the unused source that should be used effectively (Table 1). Approximately two billion metric tons of biomass are present on the earth, and 0.2 billion metric tons are added every year. Biomass produced per year corresponds to approximately 10 times of yearly world energy. Biomass can also be used as a substrate for energy production, particularly for hydrogen production.

			Consumpti	on Biomass
	Population (million)	Total demand of energy (EJ)	Traditional technology	New technology
North America	276	95.6	1.6	0.8
Western Europe	454	57.9	0.8	0.4
East Europe	386	68.8	1.3	0.4
Japan, Australia	144	21.1	0.2	0.3
Total of a developed nation	1,263	243.4	5.9	1.9
South America	448	17.5	5.3	1.9
Middle and Near East, North Africa	271	12.3	0.9	0.0
Sahara Africa	501	12.2	5.9	0.2
Pacific, Southeast Asia	1,163	45.8	14.6	0.7
South Asia	1,146	20.9	8.6	0.3
Total of a developing nation	4,029	108.3	35.3	3.1
Total of the world	5,292	352.3	39.2	5.0
New Renewable Ener	ov Resources 19	94 (World Energ	y Council)	

Table 1 The biomass energy utilization in the world

By using microorganisms, hydrogen can be obtained from wood or marine biomass. Diverse microorganisms are able to produce hydrogen, ranging from photosynthetic microorganisms that depend on light energy for acquiring the necessary energy for growth to non-photosynthetic microorganisms that depend on organic and inorganic compounds (Table 2). Microorganisms capable of producing hydrogen are classified into anaerobic bacteria, fermentation bacteria, aerobic bacteria, photosynthetic bacteria, and algae. These microorganisms can be used alone or as mixtures of multiple microorganisms depending on the biomass to be used.

Available Energy Form	En Ev	Enzyme of Hydrogen Evolution		A class of Bacteria		A Genus of Bacteria	Electron Donor	
				Green Algae			Chlamydomonas	Water
	Г Ну	drogenase				Heterocyst	Chlorella	<u>↑</u>
				Blue-Green Algae			Anabaena	<u>↑</u>
Photosynthesis						Non-Heterocyst	Oscillatoria	↑ (
						Non-sulfur Bacteria	Rhodopseudomonas	Organic Matters (Organic Acids)
	Ni	trogenase		Photosynthetic Bacteria		25	Rhodobacter	1
							Rhodospirillum	↑ (
						Sulfur Bacteria	Chromatium	Sulfates
							Thiocapsa	↑ (
				Obligate Anaerobes			Clostridium	Organic Matters (Sugers)
	—Ну	drogenase					Methanobacterium	Ť
Non-Photosynthesis				Facultative Anaerobes			Escherichia	↑ (
		$\mathcal{C}_{\mathbf{v}}$				Facultative Aerobes	Azotobacter	<u>↑</u>
	Ni	trogenase		Nitrogen Fixing Bacteria			Clostridium	<u>↑</u>
		5				Facultative Anaerobes	Klebsiella	↑ (

Table 2 Classification of Hydrogen Evolution Bacteria

2. Photobiological Hydrogen Production by Photosynthetic Microorganisms (Bacteria)

The advantage of using photosynthetic microorganisms is the ability to use light energy such as sunlight as an energy source (Figure 1).

Figure 1. Conceptual illustration for photo-hydrogen production by photosynthetic organisms

Photosynthetic microorganisms are roughly divided into algae (including cyanobacteria), which are able to use water as electron donor, and photosynthetic bacteria, which depend on organic compounds. Both microorganisms are capable of photobiological hydrogen production; however, algae and cyanobacteria are not suitable for hydrogen production, because these microorganisms do not directly degrade organic compounds such as biomass. Accordingly, in this article, photobiological hydrogen production by photosynthetic bacteria is described.

An advantage of photobiological hydrogen production by photosynthetic bacteria is that wastewater disposal and energy production can be simultaneously performed using organic wastewater as a substrate (Table 3).

Photosynthetic bacteria are able to grow by utilizing organic acids, carbohydrates, and sulfuric compounds such as hydrogen sulfide. Photosynthetic bacteria are able to rapidly assimilate volatile fatty acids (VFA) represented by acetate and propionate even at a high concentration. Thus, photosynthetic bacteria have been used in wastewater disposal at a tofu factory and animal barn. Alcohol is also a promising substrate for hydrogen production because of its high hydrogen to carbon ratio.

Substrates	Strains	Production rate	
Organic acids			
Malate	Rba. capsulatus	$130 \sim 168 \text{ mm}^3 \cdot \text{h}^{-1} \cdot \text{mg dcw.}^{-1}$	
Malate	Rba. sphaeroides	$138 - 262 \text{ mm}^3 \cdot \text{h}^{-1} \cdot \text{mg dcw.}^{-1}$	
Lactate	Rba. Sphaeroides RV	$62 \text{ ml} \cdot \text{h}^{-1} \cdot \text{g} \text{ dcw}^{-1}$	
Lactate	Rsp. Gunes	$0.6 \mathrm{dm}^3 \mathrm{H}_2 \cdot \mathrm{dm}^3 \mathrm{culture}^{-1} \cdot \mathrm{h}^{-1}$	
Mixed VFA	Rba. sphaeroides NR3	1.7 dm ³ H ₂ ·dm ³ culture ⁻¹ ·d ⁻¹	
Mixed VFA	Rba. sphaeroides RV	$2.0 \text{ dm}^3 \text{ H}_2 \cdot \text{dm}^3 \text{ culture}^{-1} \cdot \text{ d}^{-1}$	
Aromatic acids	Rps. palustris DSM 131	310 μ mol H ₂ ·h ⁻¹ ·g dcw. ⁻¹	
Sugar		5	
Raw corn	Rps. gelatinosa T-20	74 dm ³ ·kg corn starch ⁻¹	
Raw potato	Rps. gelatinosa T-20	$1.3 \text{ ml} \cdot \text{h}^{-1}$	
Raw cassava	Rps. gelatinosa T-20	$0.5 \text{ ml} \cdot \text{h}^{-1}$	
Glucose	Rsp. rubrum KS-301	91 ml·h ⁻¹	
Sulfur compounds			
Hydrogen sulfate	Chromatium sp. PBS 1071	$6 \text{ mol} \cdot \text{h}^{-1} \cdot \text{mg dcw.}^{-1}$	
Food waste		×	
Yogrut waste	Rps. rubrum S-I	12-20 ml H ₂ · dm ³ culture ⁻¹ · 10 d ⁻¹	
Whey waste	Rps. rubrum S-I	8-20 ml H ₂ ·dm ³ culture ⁻¹ ·10 d ⁻¹	
Sugar refinery	Rps. palustris	35-50 μ l H ₂ ·h ⁻¹ ·mg dry cell ⁻¹	
Sugar cane	Rps. capsulata DSM 1710	$14 \ \mu l \ H_2 \cdot mg \cdot Chl^{-1} \cdot h^{-1}$	
Tofu waste	Rba. sphaeroides RV	12.9 ml H ₂ ·ml culture-1	
Agricultural waste			
Orange process waste	Rps. sp. Miami PBE2271	$90 \text{ mm}^3 \cdot \text{g dcw.}^{-1}$	
Still waste	Rba. sphaeroides O.U.001	$0.5 \text{ m}^3 \cdot 144 \text{ h}^{-1}$	
Starch waste	<i>Rps</i> . sp. BHU 1-4	88 μ l H ₂ ·h ⁻¹ ·mg dcw. ⁻¹	
Glucose waste	<i>Rps</i> . sp. D	$0.5 \text{ dm}^3 \text{ H}_2 \cdot \text{dm}^3 \text{ culture}^{-1} \cdot \text{ d}^{-1}$	
Cow dung	Rps. rubrum S-I	$6.3 \text{ mm}^3 \text{H}_2 \cdot \text{h}^{-1} \cdot \text{mg dry cell}^{-1}$	
Rice	Rps. rubrum S-I	$35 \text{ mm}^3 \text{H}_2 \cdot \text{h}^{-1} \cdot \text{mg dry cell}^{-1}$	
Organic waste water			
Paper mill	Rsp. molischianim	70-139 μ l H ₂ ·h ⁻¹ ·mg dry cell ⁻¹	

Heated slu	dge	Rba. sphaeroides RV	0.7 dm ³ H ₂ ·dm ³ culture ⁻¹ ·d ⁻¹
Lactic vegetable	fermentated	Rba. sphaeroides RV	$62 \text{ ml H}_2 \cdot \text{g dcw.}^{-1}$

Table 3 Photo-hydrogen production from biomass

TO ACCESS ALL THE **13 PAGES** OF THIS CHAPTER, Visit: <u>http://www.eolss.net/Eolss-sampleAllChapter.aspx</u>

Bibliography

Asada Y., and Miyake, J. (1999). Photobiological hydrogen production. *Journal of Bioscience and Bioengineering* **88**, 1–6. [The principles, recent research, and development of photobiological hydrogen production are reviewed.]

Benemann J. R. (1994). Feasibility analysis of photo-biological hydrogen production. *Hydrogen Energy Progress* (International Association of Hydrogen Energy) No. 2, pp. 931–940. [The proceedings of the 10th World Hydrogen Energy Conference.]

Hall D. O. (1999). Will biomass be the environmentally friendly fuel of the future. *Biomass and Bioenergy* **15**, 357–367. [The potentials of biomass energy for environmentally friendly fuel are reviewed.]

Kitamura H., Morita, S., and Yamashita, J., eds. (1984). *Kougousei Saikin* (means Photosynthetic Bacteria, *in Japanese*). Tokyo: Gakkai Syuppan Center. [This book is the bible of research on photosynthetic bacteria in Japan.]

Miyake J., Mao, X., and Kawamura, S. (1984). Photoproduction of hydrogen from glucose by a coculture of a photosynthetic bacterium and *Clostridium butyricum*. *Journal of Fermentation and Technology* **62**, 531–535. [The system for hydrogen production from glucose by co-culture of the two kinds of bacteria is presented.]

Miyake J., Wakayama, T., Schnackenberg, J., Arai, T., and Asada, Y. (1999). Simulation of the daily illumination pattern of sunlight for bacterial photo-hydrogen production. *Journal of Bioscience and Bioengineering* **88**, 659–663. [Methods of illumination to simulate the daily sunlight irradiation pattern were studied using artificial light sources.]

Miyake J. (1998). The science of biohydrogen: an energetic view. *Biohydrogen* (eds. Zaborsky, O. R., Benemann, J. R., Matsunaga, T., Miyake, J., and Pietro, A. S.), pp. 7–18. New York: Plenum Publishing. [This book is the proceedings of an International Conference on Biological Hydrogen Production, held June 23–26, 1997, in Waikoloa, Hawaii.]

Wakayama T., and Miyake J. (2001). Hydrogen from Biomass. *BIOHYDROGEN II* (eds. Miyake, J., Matsunaga, T., and Pietro, A. S.), pp. 41-52. London: Elsevier. [This book is the proceedings of an International Conference on Biological Hydrogen Production, held June 22-23, 1999, in Tsukuba, Japan.]

Wakayama T., Nakada, E., Asada, Y. and Miyake, J. (2000). Effect of light/dark cycle on bacterial hydrogen production by *Rhodobacter sphaeroides* RV—from hour to second range. *Applied Biochemistry and Biotechnology* **84–86**, 431–440. [A method to thin out the energy as pulsed light with special reference to reducing the energy flux to bacteria at high light intensity period was investigated.]

Weaver P. F., Lien, S., and Seibert, M. (1980). Photo-biological production of hydrogen. *Solar Energy* **2**4, 3–45. [This literature survey of photobiological hydrogen production covers the period from its discovery in relatively pure culture during the early 1930s through 1978.]

World Energy Council. (1994). *New Renewable Energy Resources*. [Data of utilization of biomass energy in the world.]

Biographical Sketch

Jun Miyake, born June 4, 1951, in Japan, received his education from the Faculty of Science, University of Osaka (Chemistry, 1971–1975), Graduate School, University of Osaka (Biochemistry, 1975–1980) and University of Osaka with Ph.D. degree. He has served as the Vice Director, Tissue Engineering Research Center (TERC), National Institute of Advanced Industrial Science and Technology (AIST), an Independent Administrative Institution (IAI) under Ministry of Economy, Trade and Industry (METI), Tsukuba, Japan, and has taught at the University of Tokyo. Other appointments include Councilor of the Council for Hydrogen Energy Systems Society in Japan (HESS, 1995–), Coordinator of the MITI/AIST Protein Nano-Technology project (1998–1999), Coordinator of the RITE/MITI Biohydrogen project (1992–1999), Coordinator, MITI/AIST BioEcoMonitoring project (1998–2005), and Coordinator of the MITI/AIST 3 Dimensional Cell Tissue Culture project (1998–2006). He has published about 200 original papers and reviews.

©Encyclopedia of Life Support Systems(EOLSS)