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Summary 
 
Thermoeconomics, as an exergy-aided cost-reduction method, provides important 
information for the design of cost-effective energy-conversion plants. The exergy 
costing principle is used to assign monetary values to all material and energy streams 
within a plant as well as to the exergy destruction within each plant component. The 
design evaluation and optimization is based on the trade-offs between exergy 
destruction (exergetic efficiency) and investment cost for the most important plant 
components. The design of an energy-conversion plant may be improved using either an 
exergoeconomic iterative optimization technique or approaches of mathematical 
optimization. Thermoeconomics provides the designer with information about the cost 
formation process, the interactions among thermodynamics and economics and the 
interactions among plant components. This information is very valuable for improving 
the design of energy-conversion plants.  
 
1. Introduction 
 
Engineers involved in the design of energy-conversion plants want, after they have 
developed a first workable design, and in order to improve this design, to know the 
answers to the following questions: 
 

1. Where do thermodynamic inefficiencies in the system occur, how high are they, 
and what causes them? 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

ENERGY, ENERGY SYSTEM ANALYSIS AND OPTIMIZATION – Vol. II - Application of Thermoeconomics to the Design and 
Synthesis of Energy Plants - G. Tsatsaronis 
 
 

©Encyclopedia of Life Support Systems (EOLSS) 
 

2. What measures or alternative designs would improve the efficiency of the 
overall plant? 

3. How high is the required total investment and the purchased equipment costs of 
the most important plant components? 

4. How much do the thermodynamic inefficiencies cost the plant operator? 
5. What measures would improve the cost effectiveness of the overall plant?. 

 
The answer to the first two questions is provided with the aid of an exergy analysis (see  
Exergy and Thermodynamic Analysis). An economic analysis answers the third 
question. The last two questions can be answered with the aid of a thermoeconomic 
analysis. This analysis is called here exergoeconomics, which is a more precise 
characterization of every exergy-aided cost-reduction approach.  
 
Exergoeconomics applied to design optimization represents a unique combination of 
exergy analysis and cost analysis, to provide the designer of an energy-conversion plant 
with information not available through conventional energy, exergy, or cost analyses, 
but crucial to the design of a cost-effective plant. Design optimization of an energy-
conversion system means the selection of the structure and the design parameters (the 
decision variables) of the system to minimize the total cost of the system products (over 
the entire lifetime of the system) under boundary conditions associated with available 
materials, financial resources, environmental protection and government regulation as 
well as with the safety, reliability, operability, maintainability, and availability of the 
system. In a truly optimized system, the magnitude of every significant thermodynamic 
inefficiency (exergy destruction and exergy loss) is justified by considerations related to 
investment and operating costs or is imposed by at least one of the above boundary 
conditions.  
 
A thermodynamic optimization, which aims at minimizing the thermodynamic 
inefficiencies, represents a subcase of the general case of design optimization. An 
appropriate formulation of the optimization problem is always one of the most 
important and sometimes the most difficult task in an optimization study. 
 
Various names have already been given or could be given to various exergoeconomic 
approaches proposed in the past. These names include the following: 
 

• Exergy Economics Approach (EEA) 
• First Exergoeconomic Approach (FEA) 
• Thermoeconomic Functional Analysis (TFA) 
• Exergetic Cost Theory (ECT) 
• Engineering Functional Analysis (EFA) 
• Last-In-First-Out Approach (LIFOA) 
• Structural Analysis Approach (SAA) 
• SPECO Method (SPECOM) 

 
The main differences among the approaches refer to the definition of exergetic 
efficiencies, the development of auxiliary costing equations and the productive 
structure.  
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2.  Principles of Exergoeconomics Applied to Design Optimization 
 
Exergoeconomics applied to the design and synthesis of energy-conversion plants is 
based on two important principles that represent the fundamental connections between 
thermodynamics and economics. The first principle is common to all exergoeconomic 
approaches and applications, whereas the second principle refers only to applications in 
which new investment expenditures are needed. These principles are briefly discussed 
in the following.  
 
2.1. Exergy Costing 
 
This principle states that exergy is the only rational basis for assigning monetary values 
to the interactions an energy system experiences with its surroundings and to the 
thermodynamic inefficiencies within the system. Mass, energy or entropy should not be 
used for assigning the above mentioned monetary values because their exclusive use 
results in misleading conclusions.  
 
According to the exergy-costing principle, the cost stream ( jC ) associated with an 

exergy stream ( jE ) is given by 
 
j j jC c E=  (1) 

 
where jc  represents the average cost associated with providing each exergy unit of the 

stream jE  in the plant being considered. Equation (1) is applied to the exergy 
associated with streams of matter entering or exiting a system as well as to the exergy 
transfers associated with the transfer of work and heat. For the cost ( kC ) associated with 
the exergy ( kE ) contained within the k-th component of a system we write  
 

k k kC c E=   (2) 
 
Here kc  is the average cost per unit of exergy supplied to the k-th component. 

 
Exergy costing does not necessarily imply that costs associated with streams of matter 
are related only to the exergy rate of each respective stream. Nonexergy related costs 
can also affect the total cost rate associated with material streams. Examples include the 
cost of (a) treated water leaving a water treatment unit, (b) oxygen and nitrogen 
produced in an air separation unit, (c) limestone supplied to a fluidized-bed reactor, (d) 
iron used in a metallurgical process, and (e) an inorganic chemical fed into chemical 
reactors. Therefore, when significant nonexergy-related costs occur in a system, the 
total cost rate associated with the material stream j (denoted by TOT

jC ) is given by 
 

TOT NE
j j jC C C= +   (3) 
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Here jC  is the cost rate directly related to the exergy of stream j (see Eq. (1)) and NE
jC  

is the cost rate due to nonexergetic effects. The term NE
jC  represents a convenient way 

for charging nonexergy-related costs from one component to other system components 
that should bear such costs.  
 
2.2. Exergy Destruction Reduces Investment Cost 
 
The exergy destruction represents in thermodynamics a major inefficiency and a 
quantity to be minimized when the overall plant efficiency should be maximized. In the 
design of a new energy-conversion plant, however, exergy destruction within a 
component represents not only a thermodynamic inefficiency but also an opportunity to 
reduce the investment cost associated with the component being considered and, thus, 
with the overall plant.  
 
Figure 1 refers to a component (subscript k) of the overall plant and shows that the cost 
rate CI

kZ associated with capital investment (superscript CI) decreases with increasing 
exergy destruction rate ( D,kE ) within the same component. Instead of a single curve, a 
shaded area is presented to denote that the investment cost could vary within a given 
range for each given value of the exergy destruction. The effect of component size is 
taken into consideration in Figure 1 by relating both CI

kZ  and ( D,kE ) to the exergy rate 

of the product generated in this component ( P,kE ). 
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Figure 1: Expected relationship between investment cost and exergy destruction (or 
exergetic efficiency) for the k-th component of an energy conversion system. 

 
The vast majority of components in energy-conversion plants exhibits qualitatively the 
behavior between CI

kZ  and D,kE  shown in Figure 1. Should the investment cost increase 
or remain constant with increasing exergy destruction, then the component being 
considered can be excluded from optimization considerations because in these cases we 
would always select for this component the design point that has the lowest investment 
cost and, at the same time, the lowest thermodynamic inefficiencies (i.e. the highest 
exergetic efficiency).  
 
The curves and the shaded area shown in Figure 1 are usually not known. However, 
even then we can estimate the two asymptotic lines that determine the specific 

unavoidable exergy destruction 
UN

D,

P,

k

k

E
E

⎛ ⎞
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 and the specific unavoidable investment cost 

UNCI

P k

Z
E

⎛ ⎞
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⎝ ⎠

. 

 
All design improvement efforts should focus only on the avoidable parts of exergy 
destruction and investment costs. These parts are calculated by subtracting the 
unavoidable value from the total value of the respective variable.  
 
- 
- 
- 
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