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Summary 
 
Concern about the depletion of physical and economic resources as well as the 
degradation of the environment due to the construction and operation of energy systems 
makes it necessary to design and operate such systems in such a way that they not only 
cover the energy needs of the consumers, but also do this with the minimum 
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consumption of resources and have adverse effects on the environment. Thus, 
optimization methods have to be developed and applied. A prerequisite for this purpose 
is a deep understanding of the phenomena and processes, the development of their 
proper phenomenological and mathematical models, and the simulation that will derive 
the values of variables characterizing the performance of the system. Modeling, 
simulation and optimization methods as well as application examples are presented in 
the various articles of the present Topic, while the text here serves as a brief 
introduction, accompanied by a description of the present state of the art and of future 
research needs in the field. 
 
1. Introduction 
 
Energy systems (i.e. systems that convert one or more energy fluxes into other energy 
fluxes of different type), no matter whether primitive or elaborate, have been built and 
operated since antiquity. Power plants, cogeneration systems (e.g., combined heat and 
power systems), propulsion plants, chemical plants, heating systems, cooling systems, 
refrigeration systems and air conditioning systems are examples of energy systems. The 
concept can be broadened to include on the one hand units or systems of energy transfer 
(e.g. heat exchangers, networks for transportation of electricity and heat) and on the 
other hand systems for covering energy needs at the level of a region or a country (e.g., 
a system with several power plants and a network that supplies a country with 
electricity). 
 
The main concern of a designer and a manufacturer is to design and build a system with 
a pre-specified capacity that can cover the energy needs of the consumer(s). In the past, 
simply achieving the pre-specified capacity was sufficient, while efficiency or cost were 
of secondary importance. Today the task is much more demanding: the main goal (e.g. 
capacity) must be achieved, but with the maximum possible positive effects (e.g., 
efficiency, revenue, social benefits) and/or the minimum possible adverse effects (e.g., 
fuel consumption, costs, environmental degradation). The complexity of most modern 
systems and processes is such that the search for the maximum or the minimum of a 
performance criterion may not be performed effectively unless mathematical procedures 
known by the general name “optimization” are used. In order for these procedures to be 
applied, there is a need to first construct a mathematical model, which describes the 
performance of the energy system as closely as possible, and then, based on this model, 
to develop a simulation procedure (usually implemented in a computer algorithm) that 
will produce numerical values of the performance parameters of the system. These 
parameters may reveal the thermodynamic performance (efficiency, fuel consumption, 
etc.), the economic performance (e.g. cost of energy products) or the environmental 
performance (e.g. emission of pollutants) of the system. These subjects are treated in the 
present Topic. An overview is presented in the following, while detailed information is 
given in the individual articles. 
 
2. Modeling and Simulation of Energy Systems 
 
2.1. Definition of Modeling and Simulation 
 
Modeling and simulation are two distinct aspects of the design problem: 
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 Modeling is the act of interpreting a set of physical phenomena and of devising 
a reasonably complete, closed and comprehensive phenomenological and 
mathematical formulation for its description. Such a description usually results 
in a system of equations that, given a suitable set of initial data, can be solved to 
yield the values of the variables that describe the physics of the phenomena 
subject to modeling. Modeling is a dynamic concept: the improvement of our 
comprehension of the physics underlying a certain set of phenomena leads to 
successive refinements of previous models resulting in a more general, or more 
precise, agreement with the perceived reality of a process. A model can thus be 
seen as a paradigm of reality, in the sense that it expresses our interpretation of 
a myriad of interrelated micro- and macro effects that constitute the “real” 
process. 

 Simulation is the act of putting the models to work. On the basis of some 
suitable initial data about the state of the system and its environment, a proper 
mathematical formulation deriving from the model is applied to obtain the 
numerical values of all relevant variables for the problem in case. 

 
2.2. A Brief History of Energy Systems Design Procedures 
 
Energy conversion systems have been in use since the late Bronze Age, and there are 
well-documented examples of relatively advanced devices constructed 4000 years ago. 
In Mesopotamia (the region presently spanned by modern Iran and Iraq), wind-to-
mechanical energy conversion performed by means of primitive, but very ingenious, 
windmills provided the motive power needed for milling wheat. Similar windmills were 
known throughout the eastern Mediterranean area, and possibly even in India and 
China. For the same purpose, Babylonians and perhaps also ancient Indian civilizations 
performed hydraulic-to-mechanical energy conversion via rudimentary water wheels. 
Even thermal-to-mechanical energy conversion was enacted: the drawings by Hero 
(second century BC) show that an impulse steam turbine was in use in Egypt at least as 
far back as the fifth century BC. The design of such devices was certainly non-
systematic, trial and error being the common design technique. The “engineers” of that 
time were regarded rather as magicians; they constituted a closed social class and 
passed their experience from generation to generation without leaving any written 
physical explanation of the phenomena they were exploiting (except possibly for some 
symbolically encrypted knowledge). In modern terms, we can say that they did not 
leave records of the models they used: of course, there was not even the notion of 
simulation. Roman engineers, for instance, left no written record of their design 
practices for any of the many hydraulic plants they built. It was only after the Middle 
Ages (roughly, after 1300) that the first “scientific” explanations were attempted: we 
could say that “modeling” was born then. 
 
From the fifteenth to the seventeenth century, windmills, watermills, and some 
rudimentary thermal systems (gunpowder was brought to the West from China after the 
year 1400) were developed, always on a trial and error basis, but often with 
extraordinary insight on the part of individual inventors. Design was still based on an 
elementary modeling activity, and no simulation was even conceived. Things changed 
substantially after the development of the first steam engines in the second half of the 
eighteenth century: the science of thermodynamics was born, and the extraordinary pace 
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of development of the original concept in literally hundreds of applications reveals a 
titanic effort on the part of engineers to understand the underlying physical principles, 
and to concoct a “model” of their systems. Heat transfer began to be understood, and a 
strenuous modeling activity saw the light. Concepts such as latent and specific heat, 
energy transfer by conduction and convection, and fluid motion were intensely studied 
in the eighteenth century: of course, this had to be based on an extended 
“phenomenological modeling”. If we examine the construction details of the machines 
of that age, we see that the physics of several phenomena (leakages, fluid motion, 
mechanical friction, and so on) were quite well understood, in that proper models were 
used in the design and operation of the systems. 
 
From the mid-eighteenth to the early twentieth century, the fundamental works of 
Lavoisier, Carnot, Gouy, Stodola, and many others led to an evermore exact 
understanding of the physical laws governing the phenomena of heat and work transfer, 
and modeling became a scientific activity, based not only on intuition but on exact and 
physically sound rules involving mass and energy balances, and even consideration of 
irreversible losses. 
In the twentieth century, emphasis was put on the organization of the large body of 
experimental evidence previously acquired, and models became systematic: that is, 
based on universal conservation equations and on the proper application of general 
thermo-physical property relations. Processes and systems (notably, chemical and 
thermal) were designed on the basis of ever more refined models of the underlying 
phenomena, and design procedures were devised that made use of the mathematical 
formulation of these models to derive (by hand calculation!) some of the independent 
variables. Simulation was born and immediately adapted to those rather inefficient 
tools: iterative calculations were reduced to a minimum, and widespread use was made 
of abaci and tables for relating one design variable to another. Only after the computer 
made its appearance in the engineering world (the event can be dated to1936, when the 
first “electronic” computer, the Z1, was switched on by Konrad Zuse in Saarbrucken) 
was it possible to transfer the tedious load of iterative calculations from humans to 
machines. It became immediately apparent that computer-assisted procedures were 
more precise, less prone to casual error, and much faster than human calculations. The 
age of the slide rule came to an end, and the computer became a necessary design tool 
for process and design engineers. 
 
In recent decades, the performance of every computing device has grown at an 
impressive pace: number of operations per unit time (FLOPS), storage size (working 
“memory”), input–output devices, reliability and portability, and user friendliness have 
reached levels today that were almost unthinkable in the late 1980s, and progress is 
made literally every day. This led of course to the development of specific engineering 
applications. Computer tools are now available for process simulation, for the design 
(sizing) of components and structures, for process monitoring and control, and so on. 
The trend has accelerated to the point that it is difficult today to perform a flow-sheet 
activity (or any kind of design calculation!) without some sort of computer aid. Recent 
developments include the complete automation of simulation procedures and the 
shifting of some of the modeling activity from the human mind to the artificial assistant 
(see Artificial Intelligence in Process Design). Computer procedures are presently used 
for the solution of design and optimization engineering problems, and the trend is 
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clearly towards the codification of the “creative” portion of the design activity into 
some sort of “intelligent” code. 
 
- 
- 
- 
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