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Summary 
 
The construction and operation of energy systems not only consumes fuel and other 
scarce natural resources, but also has adverse effects on the environment. Therefore, the 
analysis, evaluation and optimization of energy systems must take sustainability issues 
into consideration quantitatively. For this purpose, three aspects must be taken into 
account: (a) the scarcity of natural resources, (b) the degradation of the natural 
environment, and (c) the social implications of the energy system, both positive and 
negative. For a quantitative treatment of these aspects, there are two principal 
approaches: (i) sustainability indicators, (ii) total cost function. The latter approach is 
presented in this article, since it has been used for the evaluation as well as the optimal 
synthesis, design and operation of energy systems. The theoretical formulation of the 
method is described and four numerical examples are presented. It is shown that 
sustainability aspects quantitatively taken into consideration have a strong impact on the 
decisions regarding system selection, design and operation. 
 
1. Introduction 
 
Not only is the transformation and use of energy resources necessary for the 
maintenance of life, it is equally necessary for maintaining the standards of living which 
can help ensure the existence of societies sufficiently stable and, thus, sufficiently able 
of providing the greatest political, social, and material benefits to the greatest number of 
people possible. However, due to accompanying adverse effects on the environment and 
society, energy’s transformation and use is one of the major threats to the sustainability 
of life on earth. Consequently, it is imperative to minimize these effects by taking them 
into account when designing, constructing, and operating energy systems. 
 
In the field of energy, extensive efforts were undertaken during the 1970s and 1980s to 
increase the efficiency of energy conversion/use and to develop new technologies that 
exploit alternative energy sources. Of primary concern was the depletion of energy 
(exergy) resources. To help these efforts, the fields of thermoeconomics and 
exergoeconomics, which combine thermodynamic and economic considerations in the 
analysis and optimization of energy systems, saw rapid growth and helped increase 
plant efficiencies without jeopardizing a plant’s economic viability. Resulting increases 
in efficiency, furthermore, led to decreases in some adverse environmental effects since 
certain pollutant emissions such as CO2 increase or decrease directly with plant 
efficiency. However, emission reductions were not the principal driving force behind 
this activity. 
 
In the 1990s, this changed and a part of the previous effort turned to research and 
development on ways of protecting the environment when developing, constructing, and 
operating energy conversion systems. As part of this effort, methods of analysis and 
optimization were developed that took into consideration not only energy use (exergy 
consumption) and financial resources expended (economics), but the scarcity of 
resources used as well as pollution and degradation of the environment resulting from 
energy conversion. Furthermore, these effects were taken into account throughout the 
entire life cycle of a system, starting with its initial conception and ending with its 
decommissioning and a recycling of materials. The term environomics appeared in the 
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literature to express the fact that environmental consequences were being taken 
“quantitatively” into consideration along with energy resource use and economics in the 
analysis and optimization of energy systems. This was an attempt to introduce 
sustainability considerations directly into the process of synthesizing, designing, and 
operating such systems. 
 
In order to introduce such considerations, three aspects must be taken into account: 
 
(a) the scarcity of natural resources 
(b) the degradation of the natural environment 
(c) the social implications of the energy system, both positive (for example, job 

creation, the general welfare) and negative (effects on human health) 
 
The use of non-renewable fuel may be included in (a), but it is usually treated separately, 
because the quantities involved are usually much larger than those of other resources. 
Direct consideration of all or some of these aspects ((a), (b) and (c)) during the process 
of synthesis, design, and operation requires a quantitative treatment since a set of only 
qualitative arguments cannot effectively resolve the complex issues that surround these 
aspects in energy systems. The quantitative treatments or approaches that have been 
proposed, can be grouped into two principal ones, namely, (i) sustainability indicators 
and (ii) total cost function. The latter is the approach used in environomics and will be 
explained in some detail below since this approach has been used to directly affect the 
synthesis, design, and operation of specific energy conversion technologies. It will be 
accompanied by a number of analysis and optimization examples. These sustainability 
indicators (for example, resource, environmental, and social indicators) are typically not 
expressed in the same units and consequently are not additive. Thus, they cannot easily 
if at all be introduced into an approach such as environomics. They may instead, for 
example, be used as non-dimensionalized indicators in a multicriteria approach, which 
employs a set of weighting factors in order to calculate the value of a general 
sustainability indicator that is used in the general assessment of a system or for 
comparisons between systems. 
 
Finally, neither of the above approaches has as of yet been fully developed nor has all 
the data required for complete analysis become available. In fact, issues of data 
completeness as well as the necessity continually to update it continue to plague efforts 
of effectively and objectively introducing sustainability considerations quantitatively 
into the development and operation of energy systems. That being said, it nonetheless 
behooves us to make the effort since it is only with this additional information that we 
will be able to arrive at energy systems that fit into a sustainability framework. 
Consequently, a considerable effort is required at an international level in order for 
sustainability considerations to be fully integrated into energy systems synthesis, design, 
and operation. 
 
2. The Environomic Optimization Problem 
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2.1. Statement of the Problem and its Objective or Figure of Merit 
 
The objective or figure of merit used in environomics consists of a net total cost 
function which may include costs for some or all of the following: the extraction of raw 
materials, the manufacture of equipment, the construction of the plant, operation, 
resources, the dismantling of used-up equipment, the recycling of material, and 
environmental (including social) damage at some or all of the stages just cited. Thus, 
from a sustainability standpoint, the net total cost of an energy system and its associated 
optimization problem for synthesis, design, and operation is expressed as follows: 
 

net tot int gen int env ext env, , t

min imize C ( , , ) C ( , , ) C ( , , ) C ( , , )dt= + + ∫x w z
x w z x w z x w z x w z  

res
t t

C ( , , ) dt B( , , ) dt+ −∫ ∫x w z x w z   (1) 

 
subject to:  
 

jh ( , , ) 0=x w z                     j = 1,...,J (2) 
 

kg ( , , ) 0≥x w z                     k = 1,...,K (3) 
 
where it is noted that all the additive terms in the net total cost function can be measured 
either in physical units (physical economics, for example, kg of material, kJ of energy, 
kJ of exergy, and so on) or in monetary units (monetary economics) and where 
 
x    Set of independent variables for operation optimization (load factors of components, 

mass flow rates, pressures and temperatures of streams, and so on). 
 
w   Set of independent variables for design optimization (nominal capacities of 

components, mass flow rates, pressures and temperatures of streams, and so on). 
 
z    Set of independent variables for synthesis optimization; there is only one variable of 

this type for each component, indicating whether the component exists in the 
optimal configuration or not; it may be a binary (0 or 1), an integer, or a continuous 
variable such as the rated power of a component, with a zero value indicating the 
non-existence of a component in the final configuration. 

 
hi(x,w,z) : Equality constraint functions, which constitute the simulation model of the 
system and are derived by an analysis of the system (energetic, exergetic, economic, and 
so on). 
 
gj(x,w,z) : Inequality constraint functions corresponding to design and operational limits, 
state regulations, safety requirements, and so on. 
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The first term to the right of the equals in Equation (1) is the internal general cost, that 
is, the cost associated with capital, and is the cost of the energy supply, excluding the 
cost of resources and environmental protection, while the second term is the internal 
environmental cost, which consists of the cost of equipment installed for pollution 
abatement within the energy system. The third term above is the internalized external 
environmental (including social) cost and is an attempt at quantifying the adverse 
effects of an energy system on the environment and on society. This cost may include 
not only external environmental costs due to the operation of the system but those due 
to the manufacture and dismantling/recycling of the capital equipment as well as the 
resources used in the system. This external environmental cost is, of course, difficult to 
assess; but current research in this area has made progress so that even though the 
research is not complete, and results to date may be disputable, it may indeed be better 
to account for this cost, subject to a sensitivity analysis, than to ignore it entirely. A 
brief discussion of how these costs are formulated and internalized into an environomic 
model is given in Section 2.2. 
 
As to the resource cost (the fourth term above), it is principally based on current prices, 
which in turn are based on the market and, thus, reflect short-term considerations such 
as extraction, processing, delivery, and current scarcity only. However, a quantity of 
raw material extracted today has at least two long-term consequences: (i) it will not be 
available for future generations, and (ii) it will cause future generations to spend more 
energy for extracting any remaining quantities. Current market prices reflect today’s 
costs of extraction and present or near-term supply and demand but do not, in general, 
account for long-term local or global scarcity or the ensuing difficulties and costs of 
extraction that this type of scarcity entails. Some methods, which provide a correction 
for the deficiency in current prices, introduce properly defined scarcity factors. A brief 
discussion of these factors as well as measures of scarcity is given in Section 2.3. 
 
The final term in Equation (1) is the benefit, which the system experiences, due to the 
sale of its products to the outside world. This term may or may not be included in the 
objective function or figure of merit for the optimization problem, depending on the 
nature of the application involved, that is, depending on whether or not this represents a 
variable quantity and, thus, affects the optimization or a fixed quantity and, thus, does 
not. 
 
Finally, it is noted that mass is not destroyed but always exists somewhere in nature. 
One may argue that if sufficient exergy were available, useful material could be 
recovered (by recycling, reprocessing, and so on), thus, closing the cycle of its 
production and use in a never-ending procedure. To the extent that this is valid, the 
scarcity of resources is translated into exergy for re-production. (Recycling and 
reprocessing cannot, of course, bring back 100% of the material used. As written by 
Nicholas Georgescu-Roegen: 
 
Available matter also becomes unavailable. … Because of the finitude of our existence, 
we cannot recycle the rubber molecules dissipated from automobile tires, the copper 
molecules dissipated from coins, … and so on down the line. 
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We could add here: because of the finitude of the exergy, reprocessing or substitution 
may not be able to cover the difference.) Similarly, if sufficient exergy were available, 
the adverse effects of the system on the environment could be neutralized and the 
environment could be restored to its initial state (with exceptions such as irreversible 
damage to human health). Thus, exergy is established as a unifying measure of all the 
terms in the total cost function when expressed in physical units (physical economics). 
In this way, the second law of thermodynamics and the concepts introduced with it 
(entropy and exergy) play a vital role in sustainability considerations for energy systems. 
 
- 
- 
- 
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