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Summary 
 
During the 1970s and 1980s, extensive efforts were undertaken to increase the 
efficiency of energy conversion / use and to develop new technologies, which exploit 
alternative energy sources. In the 1990s, this changed somewhat and a part of the 
previous effort turned to research and development on ways of protecting the 
environment when developing, constructing, and operating energy conversion systems. 
As part of this effort, methods of analysis and optimization were developed which took 
into consideration not only energy use (exergy consumption) and financial resources 
expended (economics), but the scarcity of resources used as well as the pollution and 
degradation of the environment resulting from energy conversion. These effects were 
furthermore taken into account throughout the entire life cycle of a system, starting with 
its initial conception and ending with its decommissioning and a recycling of materials. 
This was an attempt to introduce sustainability considerations directly into the process 
of synthesizing, designing, and operating such systems. A discussion of the various 
methods or approaches for doing so and why Second Law considerations play an 
important role are outlined and discussed in the series of articles which appear under 
this Topic on Sustainability Considerations in the Modeling of Energy Systems. 
 
1. Introduction 
 
Second Law considerations play an important role in any evaluation of the sustainability 
of energy conversion systems. A deeper understanding of this role is essential for being 
able to effectively introduce such considerations into the process of synthesizing, 
designing, and operating energy conversion systems across their entire life cycle, i.e. 
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from initial conception to decommissioning and recycling. A discussion of the Second 
Law’s role appears in Global Implications of the Second Law of Thermodynamics. 
Three sustainability aspects of particular importance are  
 

 the scarcity of natural resources,  
 the degradation of the natural environment, 
 the social implications of the energy system, both positive (e.g. job creation, the 

general welfare) and negative (effects on human health).  
 
The use of non-renewable fuel may be included in (a), but it is usually treated 
separately, because the quantities involved are usually much larger than those of other 
resources. Direct consideration of all or some of these aspects (i.e. (a), (b) and (c)) 
during the process of synthesis, design, and operation requires a quantitative treatment 
since a set of only qualitative arguments cannot effectively resolve the complex issues, 
which surround these aspects in energy systems. The quantitative treatments or 
approaches, which have been proposed, can be grouped into two principal ones, namely, 
(i) sustainability indicators and (ii) total cost functions. The latter is the approach used 
in environomics and is explained in some detail along with a number of analysis and 
optimization examples in Analysis and Optimization of Energy Systems with 
Sustainability Considerations. The former is explained in some detail in  Life-Cycle, 
Environmental, and Social Considerations – Sustainability, Static and Dynamic 
Pollution and Resource-Related Indices, National Exergy Accounting of Natural 
Resources, and Global Exergy Accounting of Natural Resources. These sustainability 
indicators (e.g., resource, environmental, and social indicators) are typically not 
expressed in the same units and consequently are not additive. Thus, they cannot easily, 
if at all, be introduced into an approach such as environomics. They may instead, for 
example, be used as non-dimensionalized indicators in a multi-criteria approach, which 
employs a set of weighting factors in order to calculate the value of a general 
sustainability indicator that is used in an overall assessment of a system or for 
comparisons between systems. 
  
Finally, none of the above approaches has as of yet been fully developed nor has all the 
data required for complete analyses become available. In fact, issues of data 
completeness as well as the necessity to continually update it continue to plague efforts 
of effectively and objectively introducing sustainability considerations quantitatively 
into the development and operation of energy systems. That being said, it nonetheless 
behooves us to make the effort since it is only with this additional information that we 
will be able to arrive at energy systems, which fit into a sustainability framework. 
Consequently, a considerable effort is required at an international level in order for 
sustainability considerations to be fully integrated into energy systems synthesis, 
design, and operation. 
 
2. Expansion of the Meaning of “Optimal System” – Sustainability  
 
 Life-Cycle, Environmental, and Social Considerations – Sustainability which addresses 
the topic of this section expands the meaning of “optimal system” to include 
environmental, monetary and social externalities as decision variables and/or constraints 
in process optimization procedures (see Optimization Methods for Energy Systems and 
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Design and Synthesis Optimization of Energy Systems). Thus, the analysis is expanded 
to include the entire ecosystem in space and the life-cycle of the system in time. A 
number of methods which treat such externalities are examined including Embodied 
Energy Analysis (“EE”), Emergy Analysis (“EmA”), Life Cycle Analysis (“LCA”), 
Exergetic Life Cycle Analysis (ELCA), the Cumulative Exergy Content Method 
(“CEC”), and Extended Exergy Accounting (“EEA”). For the reasons which follow, the 
first three are the least promising of these methods since they suffer from a number of 
fundamental drawbacks. For example, EE i) maintains two separate quantifiers, energy 
and money; ii) does not distinguish between different forms of energy; iii) does not 
correctly account for environmental costs since only the “downstream” portion is 
actually quantified; and iv) entirely neglects the intrinsic energetic value of materials in 
the Earth’s crust. EmA, on the other hand, i) is unable to properly account for the 
different quality of diverse energy carriers; ii) fails to correctly account for different 
types of low-entropy energy flows; and iii) is doomed to failure in its application to 
industrial scenarios by the very high degree of approximation intrinsic in the calculation 
of energy transformations. Finally, LCA also has a number of limitations including i) its 
lack of economic considerations; ii) no uniformity in approach or method for applying 
LCA; iii) assumptions and subjective valuation procedures which are not always clearly 
delineated; and iv) an inability to correctly assess thermodynamically both the resource 
base and its final end use.  
 
Thus, for a number of reasons including that they suffer from none or only some of the 
limitations outlined above, ELCA, CEC and EEA are the more promising of the methods 
examined in Life-Cycle, Environmental, and Social Considerations – Sustainability and 
are, thus, discussed in this article in more detail as is the issue of sustainability. Note 
that all three depend on the use of exergy and exergy methods of analysis and as a result 
are able to i) distinguish between different forms of energy on the basis of their quality; 
ii) able to correctly account for different types of low-entropy energy flows; and iii) able 
to correctly assess thermodynamically both the resource base and its final end use. As to 
the issue of sustainability, the conclusions drawn are that in order to achieve high 
degrees of sustainability in the development and operation of energy conversion 
systems, a major shift in both resource mix and end-use consumption standards using 
decision-support tools similar to ELCA, CEC or EEA is required. 
 
3. Pollution and Resource-related Indices  
 
Static and Dynamic Pollution and Resource-Related Indices reviews a number of the 
most prevalent sustainability indicators in the literature. As mentioned in the 
Introduction above, these sustainability indicators (resource, environmental, and social) 
are typically not expressed in the same units and consequently are not additive. Thus, 
they cannot easily if at all be introduced into an approach such as environomics (see 
Analysis and Optimization of Energy Systems with Sustainability Considerations). They 
can, however, be used as non-dimensionalized indicators in a multi-criteria approach 
used in an overall assessment of a system or for comparisons between systems. Such 
indicators represent parameters of a mathematical model of the physical or chemical 
changes occurring in the systems or environment due to interactions which occur with 
the energy system which is being synthesized, designed and/or operated. Typical 
characteristics which these indicators have are that they i) are not natural constants; ii) 
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are specific to a given substance (e.g., a pollutant or a natural resource); iii) reflect the 
current status of natural science and technology; iv) are usually a function of space and 
time; v) can be standardized; vi) are constants of the linear terms of more complex, 
nonlinear descriptions; and vii) function as part of an overall system of independent (at 
least to the extent possible) indices.  
 
For example, a number of factors are used in Life Cycle Analysis (LCA) to quantify 
consumption per service gained (C), throughput per consumption (T), environmental 
impact per throughput (I), and environmental damage per environmental impact (D). 
This is done in order to determine the environmental efficiency of the service (or 
product) gained and find alternative ways of providing (not necessarily limiting) the 
service or of identifying processes that dominate environmental interventions. To 
quantify environmental damage and impact, the LCA derived DALY indicator or index 
is used to describe reductions in the quality of life and in shortened life expectancies. 
 
Other indicators or indices are used to quantify the depletion of non-renewable 
resources such as the thermo-ecological cost and the sustainability index which are 
derived from the ecological cost which is part of the Cumulative Exergy Consumption 
Method (see Life-Cycle, Environmental and Social Considerations – Sustainability) for 
non-renewable resources. The thermo-ecological cost is an exergy-based indicator 
which results from a set of balance equations which account for the deleterious affect 
which the waste products of a given process or set of processes has on the global or 
regional environment, while the sustainability index is a measure of the non-renewable 
exergy expended in the production process of some product.  
 
Non-exergy-based resource indicators include the Possible Consumption Indicator 
(PCI) which measures the maximum consumption of a resource over a given period of 
time without diminishing the resource. This is possible due to the fact that with time 
proven reserves of resources tend to increase as the technology required to extract them 
improves and/or new reserves are found. Another of these indicators is the Current 
Consumption Indicator (CCI). It also uses the maximum consumption used by the PCI 
but divides it into the actual consumption of the resource, thus, forming a ratio that also 
accounts for the efficiency of the energy conversion process, which utilizes the 
resource. An indicator which is based on the product of the PCI and CCI is the 
Resource Depletion Indicator (RDI) which measures the change in scarcity of the 
resource due to resource depletion. 
 
Now, in order to access the sustainability characteristics of a variety of energy systems, 
a number of other indicators can be used, namely, the Resource Indicator (RI), the 
Environmental Indicator (EI), Social Indicators (SIs), and Economic Indicators (EcIs). 
The first of these is a measure of the total quantity of a particular resource (fuel and 
materials) used to the useful energy produced during the lifetime of a system. In a 
similar vein, the EI is a measure of the total of a particular effluent ejected by a system 
to the useful energy produced during a system’s lifetime. Among the SIs, which 
quantify the societal effects of different options for covering energy needs, are the New 
Job Indicator (SIjob) which is a measure of the paid new job hours corresponding to a 
particular energy option while the Standard of Living Indicator (SIStl) measures the 
amount of created capital corresponding to the same energy option. Similar to this last 
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indicator are two of the EcIs which also measure the effects of capital, i.e. the Capital 
Investment Indicator (EcIinv) which is the ratio of the capital investment to the useful 
energy produced for a given option and the Cost Economic Indicator (EcIcost) which is 
the total cost (capital plus fuel) to the useful energy produced. A third EcI is the 
Community Economic Indicator (EcIcom) which measures the gross national product in 
terms of the useful energy produced. 
 
Finally, a number of additional indicators have also been derived and come from the 
ExternE Project, which was a direct result of the 1992 Maastricht Treaty establishing 
the European Union.  These indicators are part of an overall methodology called the 
Impact Pathway or Damage Function Methodology (IPM or DFM) for characterizing 
technologies with respect to their level of emissions, the degree of dispersion of said 
emissions, the impact of these emissions on the populations affected, and the economic 
costs which these emissions engender. IPM or DFM expresses all of its damage costs as 
a function of the emissions and are site specific.  
 
- 
- 
- 
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