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Summary 
 
Solar furnaces are very useful tools to process and study materials at high temperature 
because they achieve very high temperatures in a very short time (3000 °C in few 
seconds), they allow operation under controlled and very clean atmospheres using 
quartz reactors (transparent to solar radiation), and irradiation of large sample sizes 
according to the size of the solar furnace (typically the order of 0.5 cm for a 1 kW solar 
furnace and of 20 cm for the 1 MW solar furnaces of Odeillo). Moreover combining 
these characteristics the control of material heat cycling (heating and cooling periods) 
according to requirements may be performed. This paper gives an overview of materials 
elaboration and materials testing (qualification) using concentrated solar energy. 
Materials elaboration addresses surface treatment (hardening, cladding, alloying); 
melting and purification of bulk materials (oxide ceramics, glass, metal recycling and 
separation, silicon purification); production of chemical commodities and ceramics 
(lime, aluminum, nitrides, carbides); and synthesis of nanomaterials and nanophases 
(fullerenes, carbon nanotubes, oxide nanoparticles, Si thin film). Materials testing 
addresses space and energy applications. Refractory materials are concerned. 
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Experiments are performed in original chambers that combined solar heating and 
another constraint on the surface such as vacuum, excited species, UV radiation or ion 
bombardment. Mechanisms of materials degradation, surface properties and surface 
chemistry are studied specially, oxidation, sputtering, high temperature emissivity and 
atoms recombination. 
 
1. Brief history of the use of solar energy to transform matter 
 
Just a few words first to retrace the history of the use of solar concentrated energy as 
reported by Trombe.Buffon has reported the oldest and famous history of Archimedes. 
In 215 before JC, Archimedes using solar energy with bronze mirrors had probably 
reduced to ashes the roman naval fleet composed of wooden ships that were besieging 
Syracuse. Buffon tried himself to reproduce this experiment and succeeded to burn a 
wood pile and to melt metals using one hundred forty mirrors oriented on the same 
surface.But this try was not the first one to use solar energy to obtain high temperatures. 
 
At the 17th century, some mirrors and lens (called “ardent” mirrors) allow to reach 
temperatures of around 1000°C, like the one of Cassini with a diameter of 1 m, called 
the King mirror, as it was a gift to king Louis XIV. Using this mirror, they have melted 
iron and silver very quickly. At the same time, wood mirrors covered with copper were 
used to change stones to glass. It was also the birth of image furnaces: two concave 
mirrors with different focal distances are placed face to face. At one focus a heat source 
is placed and at the focus of the second, high temperature can be obtain on a target. 
 
At the end of the 17th century and during the 18th one, lens were used in place of 
concave mirrors for fusion experiment at high temperature, as these lenses have the 
advantage to concentrate the solar radiation from top to down. 
 

 
 

Figure 1: Solar furnace of Lavoisier 
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After these several tries, done in a non-systematic way, most efficient experiments were 
carried out. Lavoisier in 1773 managed (i) to melt rapidly iron (1500°C) and to 
approach the melting temperature of platinum (1773°C) with a lens full of alcohol and 
(ii) to prove that diamond is an allotropic form of carbon as he burnt diamond at the 
focus of his solar furnace in air (Fig. 1). He has also shown that it was possible to treat 
metals under special atmosphere like nitrogen. The experiments performed by Lavoisier 
were the last done in order to produce high temperatures and to study the interaction of 
solar energy with matter. Then, the following researches with solar energy were used to 
cook food (Herschell, 1834) and to build a boiler (Mouchot, 1861). 
 
Then, Trombe, using a 2 m diameter german mirror recovered after the second world 
war, two centuries after Lavoisier, had shown the efficiency of concentrated solar 
energy to melt high refractory ceramics like alumina (2050°C), chromium oxide 
(2260°C), zirconia (2680°C), hafnia (2780°C) and thoria (> 3000°C). The first 
experiments conducted by Trombe in the 50’s, were: 
 

 synthesis in gaseous phase ; 
 continuous treatment of refractory compounds in order to have samples of great 

size ; 
 study of the fusion of mixing of oxides, of reaction of dissociation and chemical 

reactions using different compounds. 
 
After all these experiments on a 2 kW solar furnace, he explained that it is necessary to 
work on solar furnaces of huge size to obtain high temperatures on great surfaces but 
also to prepare new refractory materials for industrial purposes. Moreover, he thank that 
he will be important to separate two functions: the following of the apparent moving sun 
and the concentrator. This was the birth of the 50 kW solar furnace of Mont-Louis (F) 
and then the 1 MW solar furnace of Odeillo (F) in 1970 that is still the biggest in the 
world (Fig. 2). 
 

 
 

Figure 2: 1 MW solar furnace in Font-Romeu Odeillo (France) 
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2. Main characteristics of solar furnaces 
 
Solar furnaces are very useful to process and study materials at high temperature as they 
achieve very high temperatures in a very short time (3000 °C in few seconds), to work 
under controlled and very clean atmospheres using quartz reactors (transparent to solar 
radiation), to irradiate large sample sizes according to the size of the solar furnace 
(typically the order of 0.5 cm for a 1 kW solar furnace and of 20 cm for the 1 MW solar 
furnaces of Odeillo) and to control material heat cycling (heating and cooling periods) 
according to requirements. Moreover, solar radiation may be associated with other light 
or chemical sources in order to simulate various ‘extreme’ conditions on tested samples. 
Additional light source may be UV radiation and additional chemical species may be 
supply by microwave discharge or ion gun (see part 4). 
 
Typical characteristics of Odeillo solar furnaces are listed in Table 1. 
 
Power 
(kW) 

Maximum flux 
Density 

(MW/m2) 

Heating 
rate 

(K/s) 

Cooling rate 
(K/s) 

Pressure 
Atmosphere 

Additional 
source 

1 
6 

1000 

16 
5 
10 

1000 100-10 000 
10-5–105 Pa 
Air, Ar, H2, 

N2, O2, CO2... 

UV lamp 
m.w. plasma 

Ion gun 
 

Table 1: Some characteristics of solar furnaces in CNRS-Odeillo. 
 
Medium size solar furnaces are also available at PSA (Spain), PSI (Switzerland) and 
DLR (Germany), their power are 60 kW, 40 kW and 25 kW respectively and maximum 
flux density is about 5 MW/m2. 
 
Previous characteristics of solar furnaces are used to elaborate materials and to test 
physical and chemical behavior of metals and ceramics. The next paragraphs address 
both applications. 
 
3. Elaboration of materials using concentrated solar energy 
 
Proper characteristics of solar furnaces are combined to perform heat treatments of 
matter or materials that result in phase change, chemical reaction, component 
segregation or mixing and various transformations in the solid, liquid or gas states thus 
providing the conditions to create new materials.  
 
For example, combining rapid heating and cooling of a surface results in hardening, 
combining melting and vaporisation in controlled atmosphere results in material 
purification, and combining vaporisation and controlled cooling of the vapors results in 
nanoparticles formation.  
 
The various routes for materials elaboration using concentrated solar energy are detailed 
hereafter. They include: surface treatments, melting and purification of bulk materials, 
production of chemical commodities and ceramics, and elaboration of carbon 
molecules, nanomaterials and thin films. 
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3.1 Surface treatments 
 
Surface treatments include surface hardening and surface cladding. Thermal superficial 
treatment of metallic materials that was investigated is called transformation hardening. 
It consists of heating the surface to produce the expected phase transformation without 
heating the bulk material. When the heat source is cut off, a hard phase is formed in the 
heated zone by self-quenching. The transformation hardening of steels is combined with 
a compression resulting from the expansion of the lattice when the phase transformation 
occurs. The most commonly used phase transformation is the austenization of iron-
carbon alloys. The starting material, ferrite (centered cubic Fe-α) plus perlite (Fe-α and 
cementite Fe3C) is transformed into austenite (Fe-α cubic centered faces) at temperature 
above 850°C. When rapidly cooled (quenched), the compound is replaced by a much 
harder phase, called martensite, which is quadratic centered. The non-alloyed XC55 
steel was selected to perform solar hardening with peak flux density of 14 MW/m2. 
Results are illustrated in Figure 3.  
 

 
 

Figure 3: Hardness profiles of solar and laser treated steel 
 
The hardness is drastically increased by the solar treatment  from about 200 Hv in the 
non-affected zone up to super-hardness of 1000 Hv in the surperficial layer (0.5 – 1 mm 
thickness). In Figure 3 laser treatment is related to a 5 kW CO2 laser beam.  
 
Solar cladding was studied at NREL (Denver), at PSA and at CNRS. Recent results deal 
with  melting of stainless steel powder (AISI 316) on carbon steel followed by a rapid 
solidification. A continuous scanning process was performed by moving the sample 
with a  controlled velocity (0.8, 1.6 and 1.8 mm/s) at the focus of a vertical axis solar 
furnace. A vacuum chamber was used and operations have been carried out under an 
average flux of 13.4 MW/m2 . Strip55 mm in length, 6 mm in width and 2 mm in 
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thickness of dense solid layer were obtained. The resulting austenitic stainless steel 
offered good resistance to corrosion. Moreover NiAl intermetallic coatings were 
elaborated by a similar route: a solar assisted SHS (self-propagating high temperature 
synthesis) process. 
 
3.2 Melting and purification of bulk materials 
 
Melting of refractory oxides was intensively used by Trombe and Foex in the fifties-
sixties to produce bulk materials from powders. SiO2, Al2O3 and ZrO2, for example 
were melted in rotary furnaces using the self-crucible concept in order to avoid 
pollution of the material by metallic walls. The main principle consists of using a water-
cooled rotary cavity (cylindrical shape) filled with oxide powders and placed at the 
focus of a solar furnace. A liquid cavity starts to form at the beginning of the process 
because the density of the liquid is higher than the density of the powder. Then the 
liquid cavity enlarges inside the kiln stabilized by the centrifugal forces. At equilibrium, 
the kiln is filled with a molten bath (amphora shape) surrounded by solid particles at the 
vicinity of the wall. All the particles are not melted because of the thermal gradient 
existing beween the liquid surface and the wall. The process may be batch or continuous 
as illustrated in Figure 4a. A 500 liters rotary kiln was developed and tested (Figure 4b). 
340 kg SiO2 crucibles have been produced. Moreover oxide purification was 
demonstrated for quartz and alumina. The latter material was purified (segregation 
during solidification) from 99.8% to 100 ppm total impurities and the former from 
99.5% to 200 ppm total impurities. 
 

 
 

Figure 4: Rotary kiln for oxide melting at the 1000 kW CNRS solar furnace 
Fig. 4a: Scheme of the process ; Fig 4b: The 500 liters rotary kiln 

 
Elaboration of glass results in hazardous elements trapping in the matrix. Consequently 
solar elaboration of glasses may be used for hazardous mineral waste storage. One study 
is developed in this field, it is related to nuclear waste storage in rare earth glasses. 
Lanthanum and yttrium alumino silicates (La2O3-Al2O3-SiO2 and Y2O3-Al2O3-SiO2 
systems respectively) can be easily obtained by melting of mixed powders under air 
with a solar furnace during about 2 min and cooling with a rate of 200 K/s. The effect of 
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Na2O addition in lanthanum alumino silicate is also studied. It is known that 2% Na2O 
can improve glass performances for minor actinides (Am, Cm et Np) storage. Solar 
processing allows the mixing of large amount of Na2O (up to 13%) in the glass. 
Consequently, a detailed study of glass structure and stability as a function Na2O 
content is possible. 
 
Contrary to trapping of chemical elements in glass, vaporisation of impurities or 
valuable compounds from molten materials may result in material purification or 
material recycling respectively. For both applications the same principle is applied. This 
principle is the following, the equilibrium vapor pressure of chemical species in 
equilibrium with a liquid depends on temperature, total pressure and oxygen partial 
pressure. Thus it is possible to achieve a selective vaporisation of one or more chemical 
compounds by controlling these three parameters. The method has been applied to the 
separation of Nb and Ta from ores twenty years ago. More recently, the solar team from 
ETH and PSI used it to recover metal from waste (electric arc furnace dusts, EAFD). 
They added carbon in order to increase vapor pressure of Zn and Pb in the temperature 
range 1120-1400 K. The solar reactor is illustrated in Figure 5, it uses the indirect 
heating concept. Extraction of 99% and 90% of Zn was achieved for batch and 
continuous processes respectively.  
 

 
 

Figure 5: Solar reactor developed at PSI to separate metal from solid wastes. 
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Previous results were obtained at atmospheric pressure. Pressure reduction allows a 
more efficient separation of impurities. Purification of metallurgical grade silicon to 
obtain photovoltaic grade silicon was recently demonstrated at laboratory scale. We 
have carried out a set of solar experimental runs in a solar furnace with batch samples of 
upgraded metallurgical silicon. The process operated at reduced pressure (0.05 atm) for 
elimination of phosphorus, and with H2O (humidified argon) for elimination of boron 
(mainly as BOH, gas). Concentrations of phosphorus and boron in the samples were 
reduced by a factor of about 3 after 50 min of solar irradiation in the temperature range 
1820-1970 K. Results are illustrated in Figure 6. 
 

 
 

Figure 6: Variation of boron and phosphorus contents as a function of treatment time. 
Pressure: 0.05 atm, Argon: 1 l/min, water: 2.5 ml 

 
- 
- 
- 
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