MODELLING AND SIMULATION OF RENEWABLE ENERGY SYSTEMS

David Connolly, Henrik Lund and Brian Vad Mathiesen
Department of Development and Planning, Aalborg University, Fibigerstraede 13, DK 9220 Aalborg, Denmark

Keywords: Energy systems analysis, renewable energy systems, energy tools, energy planning, energy policy, implementation, EnergyPLAN.

Contents

1. Introduction
 1.1. Renewable Energy
2. Renewable Energy System Analysis Tools
 2.1. Comparison of Existing Tools
3. The EnergyPLAN Tool
 3.1. Objective of EnergyPLAN
 3.2. Structure of EnergyPLAN
 3.3. Operation of EnergyPLAN
 3.4. Summary of EnergyPLAN
 4.1. Defining Reference Energy Demands
 4.2. Defining Reference Energy Supply
 4.3. Defining the Regulation Strategy
 4.4. Defining Alternatives
 4.5. Evaluating Alternatives
5. Analysing Individual Technologies
 5.1. Integrating Intermittent Renewables
 5.2. Electricity Storage
 5.3. Expanding District Heating
 5.4. Electric Heating
 5.5. Transport
6. Developing Energy System Strategies
 6.1. Island Energy Strategy: Mljet, Croatia
 6.2. Regional Energy Strategy: Frederikshavn, Denmark
 6.3. National Energy Strategy: Denmark
7. Conclusions
Glossary
Nomenclature
Bibliography
Biographical of Authors

Summary

At a global level, it is essential that the world transfers from fossil fuels to renewable energy resources to minimise the implications of climate change, which has been clearly demonstrated by the Intergovernmental Panel on Climate Change [1]. At a national
level, for most countries the transition to renewable energy will improve energy security of supply, create new jobs, enhance trade, and consequently grow the national economy. However, even with such promising consequences, renewable energy only provided approximately 13% of the world’s energy in 2007 [2]. Therefore, identifying how to utilise more renewable energy is one of the most pressing challenges facing many countries at present.

Due to the ever-growing complexity of modern energy systems, energy-system-analysis tools are often used to analyse the potential of renewable energy in future energy systems. As renewable energy becomes more prominent, more energy-system-analysis tools are being created. The key element in this transfer is often to show coherent technical analyses of how renewable energy can be implemented, and what effects renewable energy has on other parts of the energy system. However, when beginning an investigation into the potential of renewable energy, it is difficult to identify which energy-system-analysis tool is the most suitable for the investigation. As a result, a selection of energy tools will be presented here to illustrate the type modelling that is possible for renewable energy systems and also, to illustrate the variety of energy tools that exist. For example, some tools focus on local community energy projects, while others consider national energy systems and some tools consider the annual amount of energy being consumed, while others focus on the hourly operation of the system. The variety of tools available has led to the conclusion that the optimum tool for a study is very dependent on the initial objectives which have been set.

This paper will 1) give an overview of a number of different energy tools and models and 2) provide a deeper description of one of these tools (EnergyPLAN) along with the methodology followed with it. EnergyPLAN has been used to establish how intermittent renewable energy, primarily in the form of wind power, can be accommodated in Denmark while reliably operating the electric grid. In addition, various case studies are presented on individual technologies and complete energy system strategies, which outline how it is possible to reach a 100% renewable energy system in the coming decades.

1. Introduction

Overall, the push towards renewable energy in any nation is typically driven by three main concerns: climate change, security of supply, and job creation. Although the significance of these issues changes from one country to the next depending on their natural resources, political stability, and demand for energy, the world as a whole will need to overcome two of these if it will ever achieve a sustainable future: climate change and energy security.

Climate change is caused by a change in the balance between the short-wave solar radiation coming into the earth’s atmosphere and the long-wave solar radiation leaving the earth’s atmosphere. At present, there is more solar radiation entering the earth’s atmosphere than there is leaving it, which is called radiative forcing. The recorded consequences of radiative forcing over the past two centuries include an increase in global average surface temperatures, an increase in global average sea level, and a decrease in northern hemisphere snow cover [3]. If these trends continue, predictions
indicate that it will lead to dramatic changes in the world’s climate which will alter water supplies, ecosystems, food supplies, coastlines, and even health. The potential implications are so devastating that the Intergovernmental Panel on Climate Change (IPCC) believes that “unmitigated climate change would, in the long term, be likely to exceed the capacity of natural, managed and human systems to adapt” [1]. However, the severity of these changes will depend on the level of greenhouse gases (GHG) which are emitted into the atmosphere in the future. Since CO₂ emission from energy production creates 64% of the world’s GHG emissions alone, the IPCC have concluded that “all assessed stabilisation scenarios concur that 60 to 80% of the reductions over the course of the century would come from energy supply and use and industrial processes” [1]. Consequently, to avoid devastating and irreversible changes to the world’s climate over the next century, energy production will need to be decarbonised by replacing fossil fuel production with renewable energy.

At present the world’s energy supply is dominated by fossil fuels. This is primarily due to the design of energy systems over the past century. In most developed systems that exist today, fossil fuels are the primary source of all energy, be it electricity, heat, or transport. As a result, in 2007 81.4% of the world’s energy was produced from fossil fuels. Even more concerning however, is the fact that by 2030 the International Energy Agency (IEA) expects the world’s energy demand to grow from 12,029 Mtoe in 2007 to 17,014 Mtoe (142%), with fossil fuels then accounting for 80.5% of the world’s energy. Mirroring this increase in energy production towards 2030 will be an increase in world CO₂ emissions. As discussed previously, further increases in CO₂ emissions will have detrimental implications for the world and hence, future energy production is clearly not sustainable. Furthermore, this increase in energy production and increase in fossil fuel consumption will lead to another major global issue, which is energy security of supply.

The most recent assessment of fossil fuel reserves carried out by British Petroleum (BP) estimated that there is only 46 years of oil, 63 years of gas, and 119 years of coal remaining which is economically accessible based on 2009 consumption levels [4]. Although it could be argued that technological developments will increase production in the future, as they have done in the past, any increase will most likely be offset by the aforementioned increase in future demand and the expected reduction in new reserves. This was quantified by Shafiee and Topal [5] who created a model that included the projected consumption and depletion of fossil fuels into the future. The results indicated that reserve depletion times for oil, gas, and coal could be as soon as 35, 37, and 107 years respectively [5]. Therefore, although there is ambiguity surrounding the exact date of fossil fuel depletion, it is evident both within [4] and outside [5] of the petroleum industry, that reserves are depleting within decades not centuries.

In summary, climate change is already being witnessed around the globe through increasing surface temperatures, rising sea levels, and decreasing snow cover. However, these changes are expected to intensify as more GHG emissions are emitted into the atmosphere. It is evident that 64% of total GHG emissions are related to CO₂ from energy production alone, primarily through the burning of fossil fuels and hence the energy sector needs to be decarbonised. However, based on current and projected trends in global energy production, it is clear that the world’s dependence on fossil fuels is set to increase and correspondingly GHG emissions will also increase. In addition, due to
the scale of the world’s fossil fuel dependence it is currently predicted that oil and gas resources will have depleted within the next century. Therefore, from an environmental, sustainability, and even security perspective, it is essential that the world eradicates its addiction to fossil fuels and moves towards a renewable based energy supply.

1.1. Renewable Energy

Renewable resources can produce energy without catastrophic climate issues and in a sustainable manner. However, it exists in many forms, with each type offering some unique advantages and drawbacks. In total, there are five primary sources of renewable energy: biomass, wind, water, solar, and geothermal. During the early 20th century, only biomass and water (in the form of hydroelectricity) remained competitive with fossil fuels. However, after significant RD&D over the last 30 years, a number of renewable technologies have now become economically competitive with conventional fossil fuels, which is evident from Figure 1. As a result, renewable energy has started to play an increasing role in energy production. Furthermore, with continued RD&D, the projections in Figure 1 indicate that the cost of renewable energy is expected to fall even further, while conventional fossil fuel generation is expected to rise. Consequently, from a costs perspective, renewable energy has already and will continue to be a realistic alternative for large-scale energy production. However, there is one key difference between conventional fossil fuels and a number of evolving renewable energy technologies: control.

![Figure 1: Historical costs of renewable and fossil fuel based electricity generation along with projected costs for 2015 and 2030 (adopted from references [6-8]).](image)

These new renewable energy devices harness resources such as wind, wave, tidal, and solar, with the most suitable device usually dependent on the natural resources within the region being considered. Naturally, these resources cannot be controlled to suit the...
demands of humans and hence the electricity generated from these renewable devices can vary significantly, which is portrayed in Figure 2. Therefore, renewable energy is providing a new form of intermittent power onto a system which has been designed to operate using dispatchable and predictable fossil fuel technologies. This intermittency can lead to many problems, especially within the electricity sector [9-16]. Therefore, to transfer from a fossil fuel to a renewable energy system, greater flexibility will be necessary within future energy systems, which will also introduce greater complexity in existing energy systems. This is not only in terms of intermittency, but also in terms of the balance necessary between electricity and heat supply units such as CHP, power plants, and boilers. This becomes even more complex with the addition of mobility, fuels, and heat pumps, which are often necessary to create even more flexibility between the various sectors of the energy system.

A crucial element in this complex transfer to renewable energy is to show coherent technical analyses of how renewable energy can be implemented, and what effects renewable energy has on other parts of the energy system. Such analysis requires computer tools (Energy tools are used to create energy models: Therefore, the computer programs discussed in this paper are referred to as ‘tools’, which can be used to create various types of models.) that can create answers for these issues by modelling defined energy systems. It is time-consuming to create new tools for each and every analysis, hence if feasible and accessible tools exist, these should be used. In this paper, a review of the various energy tools available for modelling renewable energy systems is presented to outline the various approaches to this issue. Subsequently, the approach adopted by the EnergyPLAN tool is explored in detail and finally, a range of case studies are presented for assessing individual technologies as well as developing complete energy strategies.

![Figure 2: Predicted hourly output from a 1 MW wind, wave, tidal, and solar electricity generator in Ireland during week 1 of January 2007.](image)

2. Renewable Energy System Analysis Tools

©Encyclopedia of Life Support Systems (EOLSS)
The results presented in this section culminated from a review of the various energy tools available in 2009 for modelling renewable energy systems [17]. Only tools which could assess the feasibility of integrating more renewable energy were included in this review. Otherwise, there were no significant limitations so the results could demonstrate the range of options currently available. Initially, 68 energy tools were considered for this review while 37 of these were included in the final analysis.

Bibliography

[10] Hoogwijk M, van Vuuren D, de Vries B, Turkenburg W. Exploring the impact on cost and electricity production of high penetration levels of intermittent electricity in OECD Europe and the USA, results for wind energy. Energy 2007;32(8):1381-1402. [Explores the dynamic changes in electricity production, cost and CO2 emissions when increasing penetrations of intermittent electricity sources are used.]

[11] Weisser D, Garcia RS. Instantaneous wind energy penetration in isolated electricity grids: concepts and review. Renewable Energy 2005;30(8):1299-1308. [Explores why wind penetrations are restricted in electricity systems and outlines some actions which can be taken to increase the penetration viable such as grid reinforcement, energy storage, and wind forecasting.]

[17] Connolly D, Lund H, Mathiesen BV, Leahy M. A review of computer tools for analysing the integration of renewable energy into various energy systems. Applied Energy 2010;87(4):1059-1082. [Presents a detailed overview of 37 different energy tools which have been created to analyse the integration of renewable energy.]

[20] Lund H. Renewable Energy Systems: The Choice and Modeling of 100% Renewable Solutions. Academic Press, Elsevier, Burlington, Massachusetts, USA, 2010. ISBN: 978-0-12-375028-0. [Outlines the importance of creating numerous energy scenarios for the future so that dramatic changes such as renewable energy are considered, along with a methodology for doing so.]

©Encyclopedia of Life Support Systems (EOLSS)
[21] Lund H. Large-scale integration of wind power into different energy systems. Energy 2005;30(13):2402-2412. [Explores a range of technical options for creating flexibility within an energy system, which enables higher wind energy penetrations.]

[22] Lund H. Large-scale integration of optimal combinations of PV, wind and wave power into the electricity supply. Renewable Energy 2006;31(4):503-515. [Investigates if combining different sources of intermittent renewable energy together will reduce their aggregated intermittency and thus enable higher penetrations on the power system.]

[23] Lund H, Münster E. Management of surplus electricity-production from a fluctuating renewable-energy source. Applied Energy 2003;76(1-3):65-74. [Explores a range of technical options for creating flexibility within an energy system, which enables higher intermittent renewable energy penetrations.]

[24] Lund H, Kempton W. Integration of renewable energy into the transport and electricity sectors through V2G. Energy Policy 2008;36(9):3578-3587. [Investigate the use of electric vehicles for creating flexibility within an energy system, which enables higher intermittent renewable energy penetrations.]

[26] Lund H, Munster E. Integrated energy systems and local energy markets. Energy Policy 2006;34(10):1152-1160. [Analyses how local regulation mechanisms can be used to create flexibility within an energy system]

[27] Lund H. Renewable energy strategies for sustainable development. Energy 2007;32(6):912-919. [Discusses the problems and perspectives of converting present energy systems into a 100% renewable energy system.]

[30] Mathiesen BV, Lund H. Comparative analyses of seven technologies to facilitate the integration of fluctuating renewable energy sources. IET Renewable Power Generation 2009;3(2):190-204. [Compares the economic and fuel implications of seven different technologies which could be used to reduce energy demand or increase renewable energy production.]

[31] Chen M, Lund H, Rosendahl LA, Condra TJ. Energy efficiency analysis and impact evaluation of the application of thermoelectric power cycle to today's CHP systems. Applied Energy 2010;87(4):1231-1238. [Explores the impact on system efficiency of thermoelectric generators, which can recover waste heat from both industrial and private applications.]

[32] Blarke MB, Lund H. The effectiveness of storage and relocation options in renewable energy systems. Renewable Energy 2008;33(7):1499-1507. [A metric is created for evaluating the flexibility created within an energy system due to the introduction of various technologies.]

[33] Lund H, Salgi G. The role of compressed air energy storage (CAES) in future sustainable energy systems. Energy Conversion and Management 2009;50(5):1172-1179. [Outlines how an energy system dominated by CHP production can integrate intermittent renewable energy more effectively using technologies such as heat pumps instead of electricity energy storage.]

[34] Lund H, Salgi G, Elmegaard B, Andersen AN. Optimal operation strategies of compressed air energy storage (CAES) on electricity spot markets with fluctuating prices. Applied Thermal Engineering 2009;29(5-6):799-806. [Various operating strategies for energy storage on deregulated electricity markets are simulated to establish if it is a economically viable investment.]

wind penetration feasible with the introduction of compressed-air energy storage on the Danish energy system.

[37] Lund H, Munster E. Modelling of energy systems with a high percentage of CHP and wind power. Renewable Energy 2003;28(14):2179-2193. [This study presents the energy system analysis model EnergyPLAN and uses it to analyse the consequences of different national energy investments in Denmark.]

[38] Connolly D, Lund H, Finn P, Mathiesen BV, Leahy M. Practical operation strategies for pumped hydroelectric energy storage (PHES) utilising electricity price arbitrage. Energy Policy 2011;39(7). [New operating strategies are developed for energy storage on deregulated electricity markets and assessed on 14 different spot markets around the world.]

[39] Lund H, Möller B, Mathiesen BV, Dyrelund A. The role of district heating in future renewable energy systems. Energy 2010;35(3):1381-1390. [Various heating technologies are compared to district heating to assess the consequences of these alternatives for the future Danish energy system.]

[40] Lund H. Implementation of energy-conservation policies: the case of electric heating conversion in Denmark. Applied Energy 1999;64(1-4):117-127. [Outlines some of the institutional barriers one will meet when implementing radical technological changes such as the replacement of fossil fuel with renewable energy.]

[44] Østergaard PA, Lund H. A renewable energy system in Frederikshavn using low-temperature geothermal energy for district heating. Applied Energy 2011;88(2). [Assesses the impact of installing an absorption heat pump in the city of Frederikshavn and how it impacts their overall target of becoming 100% renewable.]

[47] DESIRE. Dissemination Strategy on Electricity Balancing for Large Scale Integration of Renewable Energy. Available from: http://www.project-desire.org/ [accessed 18th January 2010]. [Investigates how CHP and district heating can be used to integrate wind energy in six European countries including Denmark, Germany, the UK, Spain, Poland, and Estonia.]

October, 2009. [Outlines the consequences of three different energy systems which could enable 100% renewable energy in Ireland: one based on biomass, one on electricity, and one on hydrogen.]

[51] Lund H, Mathiesen BV. Energy system analysis of 100% renewable energy systems--The case of Denmark in years 2030 and 2050. Energy 2009;34(5):524-531. [Describes the methodology and results from the IDA Energy Plan, which evaluated how Denmark could become 100% renewable.]

[52] Lund H, Mathiesen BV. Ingeniørforeningens Energiplan 2030 - Tekniske energisystemanalyser, samfundsøkonomisk konsekvensvurdering og kvantificering af erhvervspotentiale. Baggrundsrapport (Danish Society of Engineers' Energy Plan 2030). 2006. Available from: http://ida.dk/omida/laesesalen/Documents/analyse_og_rapporter/energiplan_baggrundsrapportsamlet.pdf. [This is the complete IDA Energy Plan report, which demonstrates how Denmark can become 100% renewable, although the particular focus is on the intermediate steps which can be taken by 2030.]

[55] Mathiesen BV, Lund H, Karlsson K. The IDA Climate Plan 2050. The Danish Society of Engineers and Aalborg University, 2009. Available from: http://ida.dk/News/Dagsordener/Klima/Klimaplan2050/Sider/Klimaplan2050.aspx. [This is the full report for the IDA Climate Plan project, which was an updated version of the IDA Energy Plan. This project describes in more detail how Denmark can be 100% renewable by 2050 and outlines the intermediary actions required in 2020 and 2030.]

[56] Future Climate Secretariat. Future Climate - Engineering Solutions. Available from: www.futureclimate.info [accessed 9th December 2010]. [Homepage of the Future Climate project, which was the framework under which the IDA Climate Plan was completed.]

[57] Mathiesen BV, Lund H, Karlsson K. 100% Renewable energy systems, climate mitigation and economic growth. Applied Energy 2011;88(2):488-501. [Summarises the methodologies and results from the IDA Climate Plan, which was an updated version of the IDA Energy Plan.]

Biographical of Authors

David Connolly (david@plan.aau.dk) is an Assistant Professor at Aalborg University who focuses on energy system analysis, large-scale energy storage, and electricity markets. He graduated with a first-class honours degree in Mechanical Engineering and received the University Gold Medal from the University of Limerick in 2007. Subsequently, he joined the Charles Parsons Initiative (www.cpi.ul.ie) also at the University of Limerick to undertake a Ph.D. in energy systems analysis. This focused on the integration of fluctuating renewable energy onto the Irish energy using large-scale energy storage. In line with this, he has developed a computer tool to locate potential locations for constructing large-scale energy storage and he has also developed a model of the Irish energy system using EnergyPLAN (www.EnergyPLAN.eu). This was used to quantify the energy storage capacities required for increasing penetrations of wind energy in Ireland and also, to create a 100% renewable scenario for Ireland. To date
He has written five peer-reviewed journal papers and a full description of his research can be found at www.dconnolly.net.

Henrik Lund (lund@plan.aau.dk) is a Professor in Energy Planning at Aalborg University and Editor-in-Chief of Elsevier International journal ENERGY. He was head of department from 1996 to 2002 and holds a PhD in Implementation of Sustainable Energy Systems (1990) and a habilitation in Choice Awareness and Renewable Energy Systems (2009). He has more than 25 years of experience in energy system analysis, energy planning, and energy economics. The International Energy Foundation (IEF) gave him a gold medal for the Best Research Paper Award within the area Energy Policies & Economics in 1998. He has been involved in a number of research projects and committee works in Danish energy planning, as well as the implementation of various local energy projects in Denmark and many other countries. In 2005-2007 he headed an international research project (www.project-desire.org) on the integration of wind and CHP and he is now the coordinator a research project on 100% Renewable Energy Systems involving most Danish universities (www.CEESA.dk). Moreover Henrik Lund is the architect behind the energy system analysis model EnergyPLAN (www.EnergyPLAN.eu) and author of the book Renewable Energy Systems: The Choice and Modeling of 100% Renewable Solutions.

Brian Vad Mathiesen (bvm@plan.aau.dk) is an Associate Professor at Aalborg University and specialises in technical and economic analysis of large-scale integration of renewable energy. His research covers the analyses of short-term well-known transition technologies to the analyses of 100% renewable energy systems and includes a variety of aspects such as technical energy system analyses, feasibility studies, public regulation and technological change. Since 2005 he has been involved in research of renewable energy systems as well as technologies for large-scale integration of wind. Dr. Mathiesen holds a M.Sc. and a Ph.D. focusing on fuel cells in future energy systems (2008). In the IDA Climate Plan 2050 (2009) he was responsible for the technical and socio-economic analyses for making a detailed road map towards 100% renewable energy system for Denmark. In 2008 and 2010 he was involved in the project Heat Plan Denmark, where future heating options were analysed in the light of the current status and the future goal of 100% renewable energy. He was also work package leader of a group analysing 100% renewable energy in transport and mapping the residual biomass resources in the CEESA which involved five Danish universities among others and ran from 2006 until 2010. In a research project for the Danish TSO focus on the integration of renewable energy, socio-economy and CO2 emissions from hydrogen fuel cell vehicles, as well as different charging strategies for hybrid hydrogen fuel cell vehicles and battery electric vehicles in 2009. He has also worked with the Danish TSO on charging strategies for hybrid hydrogen fuel cell vehicles and battery electric vehicles, developed 100% renewable energy systems for Croatia and Ireland with other researchers and finally, developed LCA methodologies and PCR focusing on the interrelation between energy system analyses and LCA.