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Summary 
 
This article reviews the present status and possible future developments of photovoltaic 
(PV) materials for terrestrial applications. The principle of the photovoltaic conversion 
is first recalled. Then the physical and technical limitations of crystalline silicon and 
inorganic thin films (a-Si, μc-Si, pc-Si, Cu(In,Ga)(Se,S), CdTe) serving as absorbing 
materials for solar cell devices are described. Other potential materials to be used in 
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dye-sensitized solar cells and organic solar cells are also mentioned. Finally, advanced 
nanomaterials and concepts that can offer potential to high absorption, large carrier 
generation, and efficient separation towards very high efficiency solar cells are 
considered.  
 
1. General Introduction  
 
Photovoltaic technology (PV) exploits the most abundant source of free power from the 
Sun and has the potential to meet almost all of mankind’s energy needs. Unlike other 
sources of energy, PV has a negligible environmental footprint, can be deployed almost 
anywhere and utilises existing technologies and manufacturing processes, making it 
cheap and efficient to implement. A Photovoltaic system contains individual cells 
connected in series or parallel to make a module that converts sunlight into electricity. 
Each cell (figure 1) is composed of a semi-conducting material (silicon Si, Gallium-
Arsenide GaAs, Cadium-Teluride CdTe, Copper-Indium-Gallium-Selenide CIGS, 
polymers, molecules…), dielectrics and metal contacts. Light falling on the cell creates 
electron-hole pairs than are separated and flow towards opposite contacts, thanks to an 
internal electric field across the semiconductor. The intensity of the light determines the 
amount of electrical current each cell generates. The voltage is determined by the 
specific semiconductor material and its quality. The product of the current and voltage 
is the power output (quantum efficiency) from the cell.  
 

 
Figure 1: Schema of an illuminated solar cell 

 
The maximum thermodynamic efficiency for the conversion of unconcentrated solar 
irradiance into electrical free energy in the radiative limit assuming detailed balance and 
a single threshold absorber was calculated by Shockley and Queisser in 1961 (Shockley 
et al., 1961) to be about 31%. For comparison, the efficiency of a system based on 
mineral resources is thermodynamically limited to about 30-35% at best, i.e. in the 
range of what can be produced by photovoltaic conversion now. There are many losses 
in single bandgap solar cells (Figure 2) but the two most important power loss 
mechanisms are the inability to absorb photons with energy less than the bandgap (5 in 
Figure 2) and thermalisation of photon energies exceeding the bandgap (1 in Fig. 2). 
These two mechanisms alone amount to the loss of about half of the incident solar 
energy in solar cell conversion to electricity.  
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Figure 2: Loss processes in a standard solar cell: (1) lattice thermalisation loss of 
carriers generated by above band gap photons; (2) and (3) junction and contact voltage 
losses; (4) recombination loss (radiative recombination is unavoidable); and (5). non-

absorption of photons below the bandgap. 
 
Green (Green, 2003) proposed to distinguish among 3 generations of photovoltaic 
technologies (Figure 3). The “first generation” and currently dominating technology 
based on the fabrication of high quality and hence low defect single crystal photovoltaic 
devices (silicon wafers based), which have high efficiencies that are approaching the 
limiting efficiencies for single band gap devices but which use energy and time 
intensive techniques.  

 
Figure 3: Efficiency and cost projections for first (I), second (II) and third-generation 
(III) PV technologies (wafer-based, thin films, and advanced thin films, respectively). 

 
The generation II which uses thin films semiconductor materials and appropriate 
fabrication technologies that offer low materials consumption and large area modules. 
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This results in moderate efficiencies but low costs. Finally, the “third generation” 
approaches aim to achieve high efficiency for photovoltaic (PV) devices by 
circumventing the Shockley-Queisser limit for single-bandgap devices.  
 
The concept is to do this with only a small increase in areal costs and hence reduce the 
cost per Watt peak. Also, in common with the silicon and CZTS based second 
generation thin film technologies, these will use abundant and non-toxic materials. Thus 
these “third generation” technologies will be compatible with large scale 
implementation of photovoltaics, and aims to decrease costs to well below the $1/W 
level of second generation towards US$0.20/W or better, by significantly increasing 
efficiencies but maintaining the economic and environmental cost advantages of thin 
film deposition techniques (see Figure 3 of the three PV generations, Green, 2003).  
 
Before giving details about materials and technologies used for the photovoltaic 
conversion, let us start with some history: The first photoelectric effect was reported by 
Antoine Becquerel in 1839 who demonstrated the production of an electric current upon 
illumination of a cell composed of two electrodes from platinium and copper oxide and 
immersed in an electrolytic acid solution. In 1877 Adam and Day discovered the 
photovoltaic effect in selenium, and C. Fritts produced the first photovoltaic solar panel 
using such material. But it was only in 1905 that Albert Einstein published a paper to 
explain the mechanisms behind the photoelectric effect. He got the Nobel price in 1921 
for this discovery.  
 
Much later, in 1940, Ohl described the fabrication of the first p-n junction on silicon. 
But the tipping point of this solar–electric technology occurred in 1954 when D.M. 
Chapin, G.L. Pearson, and C.S. Fuller from Bell Telephone Laboratories announced a 
conversion efficiency of about 6% using crystalline silicon as a base material, thus 
demonstrating a strong potential for these solar-powered devices as real electrical power 
sources. Since then progress in materials quality, technology and quantum efficiency 
has been substantial and steady, thanks to the strong research in microelectronics and 
optoelectronics.  
 
Figure 4 presents the research progress over the past 30–35 years of the best laboratory 
cell efficiencies for different materials and associated technologies as will be described 
below. The observed positive trend is a result of a progression of substantial and 
creative research and development improvement in materials, devices, fabrication, 
characterization, and processing, leading to better device performance and reliability. 
Some additional information can be drawn from figure 4: 
 
- Almost a decade was necessary to approach the efficiency limit for a single bandgap 

material such as silicon, CIGS and CdTe.  
- Multijunction cells such as InGaP/InGaAsP/Ge device grown using epitaxial 

techniques allow much higher efficiencies 
-  New devices such as dye sensitized cells (DSC), polymer based cells and copper 

zinc tin sulphide (CZTS) emerged recently and are progressing very fast, due to a 
huge effort deployed by research institutes and industry. 
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Figure 4. Efficiency evolution of best research cells by technology type. This table 
identifies those cells that have been measured under standard conditions and confirmed 

at one of the world's accepted centers for standard solar-cell measurements [source 
Kasmerski et al, National Renewable Energy Laboratory]. 

 
From the production point of view, Figure 5 presents the worldwide module shipments 
for the last decade. Since 1990, photovoltaic module production has increased more 
than 500-fold from 46MW to 23.5 GW of installed generating capacity in 2010, which 
makes photovoltaics the fastest-growing industry at present. In 2010, the world-wide 
photovoltaic production more than doubled, driven by major increases in installation in 
Europe. Thus the annual market volume of newly-installed solar photovoltaic electricity 
systems for 2010 varies between 17 and 19 GW, depending on estimates. This 
represents mostly the grid-connected photovoltaic market, as there are no reliable data 
available for the non grid-connected market. With a cumulative installed capacity of 
over 29 GW, the European Union is leading in PV installations. By the end of 2010, 
European photovoltaic installations provided more than 70% of the total world-wide 
solar photovoltaic electricity generation capacity. It can be noticed also from Figure 5 
that the photovoltaic industry has changed dramatically over the last few years. China 
has recently taken over from Germany as the major manufacturing centre for solar cells 
and modules followed by Taiwan, Germany and Japan. 
 
Another very important feature is the dramatic price reduction for solar modules by 
almost 50% since 2007. This can be explained by the evolution from a supply to a 
demand-driven market and the resulting over-capacity for solar modules. Business 
analysts predict that investments in PV technology could double from € 35-40 billion in 
2010 to over € 70 billion in 2015, while they expect prices for consumers to 
continuously decrease. Though, the photovoltaic electricity price, of about 15–20 EU 
cents/kWh, is still too high for many grid-tied applications, it is approaching or has 
reached retail parity in some markets which have both large solar resources and 
relatively high electricity prices, these include south of Italy and some parts of 
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Australia. The price is still however for wholesale (central utility) generation, although 
one of the attractive aspects of photovoltaics is its modularity and appropriateness for 
distributed generation markets, helping to ensure continuity of supply for weak 
gridlines. Nonetheless continued price decrease and efficiency increase is needed to 
drive the competitiveness of PV technology to truly large scale implementation on the 
multi terra W scale. Intense effort is being employed by researchers and PV 
manufacturers to enhance significantly the efficiency at cell and module levels and to 
increase the throughput at the production level. The building of multi-GW markets 
moving toward the terawatt levels, and manufacturing plants to hundreds of megawatts 
are becoming more and more feasible.  
 

 
 

Figure 5. Global evolution of Photovoltaic installed capacity (in MW); from “Global 
Market Outlook for Photovoltaics until 2014”, EPIA, May 2010. 

 
In order to maintain the high growth rate of the photovoltaic industry, different 
pathways have to be pursued. There is a need to reduce the material consumption per 
silicon solar cell because the cost of silicon is one of the main price factors of such 
devices. In parallel, the manufacturing of thin-film solar cells should be increased and 
the introduction of concentrated photovoltaics (CPVs) should be accelerated, including 
the use of cheaper concentrating lenses, typically made of plastic. For the long term, 
new compounds and advanced cell designs should be developed to produce very high 
efficiency solar cells.  
 
This paper describes succinctly the current PV technology status with an emphasis on 
R&D needs and directions. Also future generation PV materials and concepts will be 
presented. 
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