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Summary 

 

An overview is provided, which explores different types of thermal desalination units, 

focusing on conventional and hybrid desalination technologies that address the global 

water crisis. Low-cost desalination methods are developed by coupling different 

thermal-based desalination systems with vapor compression, reverse osmosis or an 

adsorption cycle. Hybrid systems produce high-quality freshwater and have a cooling 

effect. Owing to the future global demand for freshwater and power due to the 

population growth and fast rate of industrial development, dual-purpose power-

desalination (co-generating) plants are also studied. The conventional thermal 

desalination processes and hybrid systems are evaluated from the energy-exergy point 

of view to evaluate the process efficiency. The effects of the main parameters in 

different processes on system performance and energy-exergy efficiencies are stated. 

 

1. Introduction 

 

The need for drinkable water poses a great problem in arid areas where freshwater is 

becoming scarce. An increase in the world population combined with industrial and 

agricultural activities leads to the reduction of freshwater resources. Desalination as one 

of the primary methods of water treatment is a common solution to overcome water 

shortage. Desalination uses a great amount of energy to separate pure water from saline 
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water (Qiblawey and Banat, 2008). Desalination plants are classified as shown in Figure 

1. Thermal-based desalination is accomplished using multiple-effect distillation (MED), 

also known as multiple-effect evaporation (MEE), mechanical and thermal vapor 

compression (MVC and TVC), humidification-dehumidification (HDH), multi-stage 

flash distillation (MSF), membrane distillation (MD) and solar still (SS) (Alpatova et al, 

2018). Power generation, unit capacity, process scheme, and fuel cost affect the 

selection of the desalination process (Mayor, 2019). 
 

Due to the high energy consumption of desalination processes, numerous investigations 

have been conducted to decrease the specific energy consumption (SEC), which is the 

required energy to produce 1 kg of pure water as: 
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where, 
.

pwm , and 
.

inW  are desalination rate and required electrical energy for running 

the electrical devices, respectively (Ayati et al, 2019). 

 

To operate thermal desalination processes, thermal and electrical energies are required. 

The electrical and thermal energies are essential for running the pumps and evaporating 

seawater, respectively. Other performance parameters are gained output ratio (GOR), 

which indicates the thermal energy required to produce 1 kg of desalinated water, and 

performance ratio (PR), which means the thermal and electrical energies required to 

produce 1 kg of desalinated water. These items are defined as: 
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where, 
.

pwm , fgh , 
.

inQ , and inW
.

 are desalination rate, latent heat of vaporization, 

required thermal energy for saline water evaporation, and required electrical energy for 

operating the electrical devices. 

 

High GOR and PR and low SEC are the specifications of newly designed desalination 

units (Rahimi-Ahar et al, 2018). Thermal type desalination technologies are tabulated in 

Table 1 based on the GOR, plant capacity, and maximum process temperature. 

Improving the efficiency of the components (evaporator, condenser, and pump), using 

renewable energy sources, and reducing the operation temperature, improves the system 

performance (Su et al, 2019). For further improvement in the performance, a vacuum 

evaporator or humidifier based on the hydrostatic head can be used (Choi , 2017; 

Elsharqawy et al, 2013). The desalination rate increases with the height of the passive 

vacuum tube with no extra energy consumption for creating the vacuum.  
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Figure 1. Classification of desalination plants 
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MED and MSF plants have the benefits of using low-grade heat for evaporation, 

following the production of desalinated water. In MED, the energy is supplied to the 

first effect of the unit. The system performance and produced water cost depend on the 

number of effects. In MSF, the superheated steam is used in the brine heater. The 

produced top brine temperature (TBT) is in the range of 90-110 °C. The low-grade heat 

produced from a sulfuric acid plant can be used as the heating source in the MSF and 

MED plants (Shih, 2005). MSF process has a lower performance ratio (PR) than MED 

in the waste heat-assisted type systems. This is due to the low temperature at the 

entrance of the brine heater, which is heated via released low-grade heat source. An 

economic and technical performance study of the steady state MSF, reverse osmosis 

(RO), and MSF–RO models revealed that the MSF-RO has lower cost and higher 

recovery than MSF, and higher water quality than RO (Malik et al, 2016).  

 

Desalination method Maximum 

GOR 

Capacity ( 10
6 

m
3
/d) 

Maximum process 

temperature (°C) 

RO - 37 45 

MSF 14 17 115 

MED 25 6 80 

VC 12-14 - 100 

HDH <16.7 - 90 

MD - - 90 

Others (MED-RO, 

MSF-RO, MD) 

- 12 80 

 

Table 1. Desalination method and production capacity (IDA, 2016-17; Shih, 2005; 

Malik et al, 2016; Bundschuh et al, 2015;Pouyfaucon and García-rodríguez, 2018)  

 

It is notable that RO is not recommended for high salinity feed water (above 45000 to 

47000 ppm). It is more expensive process due to the frequent maintenance requirement 

and consuming high-grade energy. Other drawback of RO process are declining fresh 

water quality over time, inappropriate operation for zero liquid discharge that is 

environmentally challenging process, passing toxins from membranes and vulnerability 

of membranes due to biological fouling. Some policies such as pre-treatment operation 

for the algal removal of saline water (especially gulf waters) and using ultrafiltration 

membranes are recommended (Villacorte et al, 2014; Ahmadvand et al, 2019 ; 

Villacorte et al, 2014).  

 

Investigation on the geothermal and solar-based technologies confirms that geothermal 

technology is superior to the solar-driven processes if low-cost geothermal heat is 

accessible. This superiority is due to provision of continuous heat in contrast to solar 

energy (Bundschuh et al, 2015). Furthermore, the geothermal based desalination plants 

have the potential to be up-scaled, which is not possible with solar. The intermittence of 

sunshine limits the up scaling in solar desalination technology.  

 

Solar-assisted desalination technologies were investigated by consideration of rural 

societies with low drinkable water demand; districts with a requirement of both water 
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and electricity, and intermediate drinkable water requirement by Pouyfaucona and 

García-Rodríguez (2018). Dish concentrator coupled to a micro gas turbine (GT), PV 

panels used for energy production, while RO, MD, and electrodialysis (ED) desalination 

processes were recommended for water production in rural communities. Regions with 

water demands over 25,000 m
3
.d

-1
 required solar power plant and RO for energy and 

water production, respectively. RO driven by parabolic trough collectors (PTCs) or 

linear Fresnel concentrators could produce the required water for regions with 

intermediate water production requirements.  

 

One direct solution for performance improvement of desalination processes comes from 

their hybridization with the newer desalination technologies (adsorption desalination) 

and power plants (Ng et al, 2015).  

 

An increase in desalinated water demand encourages the researchers in the desalination 

field to develop modified configurations of conventional desalination processes. Hybrid 

desalination systems, optimization, desalination-power plants, and thermodynamic 

analysis are the solutions for improved design. This chapter provides a comprehensive 

review of various experimental and theoretical advancements carried out for 

performance improvement of thermal-based desalination processes, focusing on the past 

and recent ideas. The influence of various effective parameters on the system 

performance is also discussed. 

 

2. Assessment of Recent Developments in Thermal Desalination Systems 
 

2.1. Desalination based on Multi-Stage Flash (MSF)  

 

The MSF units involve the largest thermal desalination plants supplying freshwater to 

many areas, especially in the Middle East and Northern Africa, where thermal 

desalination still prevails over membrane units. The schematic diagram of the MSF 

desalination system is presented in Figure 2. 

 

 
 

Figure 2. Schematic diagram of multi-stage flash (MSF) desalination system 
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The feed water is heated by steam in the 1
st
 stage, flows into a series of compartments. 

The pressure reduces successively in the following stages, and the differential pressure 

between the stages (driving force for evaporation) builds up. Saline water that has not 

evaporated in the 1
st
 stage moves into the 2

nd
 stage and the process continues to the last 

stage. The released vapor condenses giving desalinated water, and at the same time, its 

condensation enthalpy transfers to the entering feed water. A conventional MSF 

encompasses brine heating followed with flash distillation in multiple stages to recover 

the heat. An MSF plant consists of the brine heater, heat rejection, and heat recovery 

sections. Once through (OT), simple mixer (M) and brine recirculation (BR) designs 

have been introduced. Among them, OT is the simplest in design, while, the BR design 

is efficient (Bandi et al, 2016). In MSF-OT design the total brine flows once-through 

the process, in MSF-M design, part of brine is mixed with incoming saline fed water. In 

MSF-BR design the processed seawater mixes with the brine leaving the last stage. TBT 

is one of the main factors that affect the optimum design of MSF. It is a function of 

boiling point temperature at zero salinity, and temperature elevation owing to salinity. 

The temperature elevation is predictable by neural-network based correlations (Tanvir 

and Mujtaba, 2006). MSF performance is enhanced by recovering the sensible heat 

from the distillate at the MSF stages to increase the temperature of make-up seawater 

(Al-Weshahi et al, 2014). 

 

Some features of MSF are listed as follows (Compain, 2012): 

- High reliability 

- No pre-treatment requirement 

- High investment cost 

- The capability of producing pure water 

- Low running flexibility (low variant in flowrate) 

- Less scale formation than other thermal desalination methods. 

 

An MSF system with brine extraction and re-injection into flashing chambers 

technology was developed and was analyzed economically by Al-Hamahmy et al 

(2016). The extracted brine did not flow into the brine heater or high-temperature 

flashing stage. Therefore, the surface area of the condenser at the brine heater and the 

flashing stage was reduced. The condensation heat load is transferred to lower 

temperature flashing stages, where a cheaper condenser tube material was used. Single-

point brine extraction showed better performance than multiple-point brine extraction. It 

was due to the increase in simplicity and reduction in the robustness of the MSF. The 

optimum extraction ratio of 9% was resulted and caused a 7.2% enhancement in GOR, a 

3.5% decrease in SEC, and a 3.9% reduction in production cost.  

 

The most costly operational problems in thermal desalination processes are scale 

formation and corrosion in the equipment (Hawaidi and Mujtaba, 2010). A steady-state 

model of MSF was developed based on the mass and heat balances by consideration of 

supporting correlations related to physical properties. It was resulted that a 90% 

increase in the brine heater fouling causes a decrease in the heat transfer coefficient and 

TBT; hence, the desalination rate reduced by 5.5%. The higher fouling factor led to an 

increase in steam consumption. The optimization of recycled brine flow rate and steam 

temperature minimized the operation cost of the MSF that led to the best operation 

policy for a year. 
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The SEC evaluation of a MSF (20-stage) plant was reported by Hanshik et al (2016). It 

was indicated that the performance of the MSF system increases with the elevation of 

TBT and by varying the operating conditions of the proposed plant. The TBT elevation 

extended the capacity of MSF, and a large-scale brine rejection pump was required. 

Replacing a condensate pump solved this problem. The TBT increase caused fouling, 

and the proper antiscaling materials were required.  

 

The performance of MSF using antiscalants derived from organo-phosphonates, 

polyelectrolytes, and polyphosphates was studied by Hamed and Al-Otaibi (2010). The 

antiscalants were examined in an MSF plant at TBT of 119 °C. It was recommended to 

control the scale formation by optimization of the antiscalant dose rate. 

 

A computational fluid dynamics (CFD) study of the flashing process was developed 

using two-phase VOF (volume of fluid) formulation by Nigim and Eaton (2017). Two 

phase-change mechanisms were followed based on the vapor pressure and the saturation 

temperature. The flow pattern, phase change area, shape of free area, and behavior of 

the flashing chamber were predicted by solving the steady multi-phase flow equations. 

Bubble formation was reduced along the length of the flashing chamber. CFD provided 

a good estimation of the non-equilibrium temperature difference and flashing efficiency.  

 

An MSF plant using two PTCs and a solar pond was simulated via ASPEN HYSYS by 

Al-Othman et al (2018). The plant was equipped with a boiler to provide the required 

heat for the process at sunset times. An amount of 1880 m
3
.d

-1
 desalinated water was 

produced out of 40,000 m
3
.d

-1
 of seawater. It was shown that PTCs and solar ponds by 

aperture areas of 3160 m
2
 and 0.53 km

2
 provide 76% and 24% of the process energy 

requirements, respectively. 

 

Multi-stage vacuum chambers of flat plate solar collectors were applied to run a solar 

MSF unit (Darawsheh et al, 2019). It was found that by 20% pressure reduction in the 

vacuum flash chamber, the distillation to evaporation ratio and SEC are improved by 

53% and 35%, respectively. The solar MSF process enhanced system performance, cost, 

and energy-saving by increasing vacuum pressure inside the chambers. 

A solar-powered MSF plant comprising of two concentrating solar collectors and two 

storage tanks was investigated by Alsehli et al (2017). The storage tanks received pre-

heated brine extracted from the MSF. The brine is heated in collectors to reach the TBT. 

Operating the dual-tank system provided hot water at all times and preserved TBT from 

energy losses. By adjusting the mass flow rates, a similar TBT was provided. The 

system with a collector area of 42,552 m
2
 resulted in a desalination rate of 2230 m

3
.d

-1
 

with a total water price of $2.72/ m
3
. 

 

An MSF producing 20 MIGD (million imperial gallons per day) of desalinated water 

was studied by Mabrouk (2013). The brine recycled MSF with long and cross tube 

bundle evaporators were used. The heat transfer area of the long tube was 25% lower 

than that of the cross tube, due to the improvement in the heat transfer rate and less 

energy consumption of the pump used in the long tube design. Condensation was 

enhanced by using five long tube bundles per each stage.  
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2.2. Desalination based on Multiple Effect Process  
 

MED (or MEE) is used for small/medium scale (2,000 to 15,000 m
3
.d

-1
) to large-scale 

(up to 25,000 m
3
.d

-1
) plants. Contrary to MSF, MED uses water at low temperature or 

vapor. It is comprised of a series of chambers in which the latent heat is used for 

evaporation. The generated vapor in the 1
st
 stage flows to the 2

nd
 stage and is used to 

evaporate part of the feed water coming from the 1
st
 stage. The produced vapor flows to 

the 3
rd

 stage, at a lower pressure than the previous stages. This proceeds up to the last 

stage, where the vapor is directed to the condenser (Messineo and Marchese, 2008). The 

schematic diagram of the MED desalination system is presented in Figure 3. Coupling 

MED with the VC process decreases running costs while increases the unit capacity and 

heat transfer coefficient.  

 

Some features of MED are as follows (Compain, 2012): 

- Easy start-up; 

- The capability of producing high-grade freshwater; 

- Operation by a low-temperature heat source (prevention of scale formation and 

corrosion); 

- No necessity to pre-treating due to very low scaling; 

- Adaptability to co-generation. 

 

A forward feed multi-effect evaporation (FF-MEE) desalination plant, using solar (flat-

plate collector) and wind (wind turbine) sources, was simulated by Halil and Söylemez 

(2012). In FF-MEE the brine and the distillate flowed through successive effects in the 

pressure and temperature reduction routes (1
st
 to the last effect), while the feed seawater 

flows in the opposite direction. The thermodynamic laws and the mass-heat balance 

equations were applied. It was found that the solar energy is more stable than wind 

energy due to the fluctuation of wind velocity during the operation.  

 

 
 

Figure 3. Schematic diagram of multi-effect distillation (MED) desalination system 

 



SOLAR CO-GENERATION OF ELECTRICITY AND WATER, LARGE SCALE PHOTOVOLTAIC SYSTEMS - A Perspective 
Of Thermal Type Desalination: Technology, Current Development, And Thermodynamics Analysis - Zohreh Rahimi-Ahar and 

Mohammad Sadegh Hatamipour 

©Encyclopedia of Life Support Systems (EOLSS) 

A six-effect MEE system was simulated and optimized at a steady-state condition by 

Khademi et al (2009). Among condenser pressure, feed flow rate and feed temperature, 

the feed temperature played the most important role in the MEE output. The feed flow 

rate of 51,408 kg.h
-1 

and condenser pressure of 7.6 kPa were the optimized values.  

 

A concentrating PV/thermal collector field coupled to an MEE plant was simulated by 

Mittelman et al (2009). The proposed dual-purpose system produced water and solar 

electricity, simultaneously. The cost of produced water in the coupled system was 

compared with stand-alone MEE and RO. It was found that the coupled system is more 

cost-effective than the solar MEE approach. RO running by a PV was the best solar 

alternative where solar desalination plants were more costly than the conventional ones.  

 

The prospects for a 6-effect MEE process improvement were investigated through the 

thermo-economics aided optimization using pinch-based technique (Piacentino and 

Cardona, 2010). The optimization of the MEE system involved solving the non-linear 

equations of mass and heat balances for the evaluation of phase equilibria, heat transfer 

rate, thermodynamic and chemical properties. It was shown that the flash at brine inlet 

and the exergy loss at the pre-heaters cause high exergy destruction when the 

temperature difference between two successive effects increases. The proposed 

technique revealed the limitations of the integration of cogeneration and desalination 

systems. It was due to the heat supply that depended on the cost of steam, fuel, and 

electricity.  

 

A low-temperature MEE plant containing horizontal-tube falling film evaporator was 

investigated thermodynamically (Shen et al, 2018). It was shown that the distribution of 

temperature is not uniform in the tube bundle. This non-uniformity of the temperature 

distribution should be considered in the evaluation of the heat transfer rate. 

 

Four arrangements of MED including backward feed (BF), forward feed (FF), parallel 

feed (PF) and parallel/cross feed (P/CF) were modeled in steady and unsteady 

operations by Elsayed et al (2018a). A TVC was coupled to the last effect of P/CF 

configuration and was compared with the other configurations regarding GOR and SEC 

to prove the benefit of this integration. TVC-P/CF achieved the lowest produced water 

cost. Unsteady state modeling showed that TVC-P/CF has the fastest response to the 

applied disturbances. Variation in parameters led to the highest variation in GOR for the 

MED-TVC process in comparison with the BF, FF, and P/CF type MEDs. A reliable 

control could avoid operational disturbance. It was proved that the P/CF has the best 

performance characteristics among all feed configurations regarding GOR and SEC. 

The highest exergy destruction of 58% occurred within the TVC that could be reduced 

by decreasing the motive steam pressure. The exergy destructions related to the pumps 

and condenser were in the range of 4 to 6.7% of overall exergy destruction (Elsayed et 

al, 2018b). 

 

The efficiency of an MED operated with thermocline energy from the sea was proposed 

by Shahzad et al (2018). MED performed well at the temperature difference of 20 °C 

that was created between the warm surface and cold sub-surface water (at the depths of 

300–600 m). The proposed desalination system efficiency doubled over the 

conventional MED.  
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Mathematical and economic models of a low-temperature (LT) MED plant consisted of 

evacuated tube collector (ETC), storage tank, electrical heater, cooling unit, and flash 

tank were developed by Liu et al (2013). Increasing the steam temperature in the 1
st
 

effect led to a reduction in the size of the evaporator and freshwater cost, and increased 

the size of the storage tank. By increasing the number of effects, the size of the storage 

tank changed slightly, while, the size of the evaporator and desalination rate increased 

more.  

 

Performance evaluation on a multi-effect distiller (capacity of 3 m
3
.d

-1
) including shell 

and tube HEX was carried out by Joo and Kwak (2013). The main parameter related to 

the performance of MED was the hot water flow rate. The PR of modified MED was 

about 2 and its desalination rate was 7 times more than that of a SS.  

 

An 18,000 m
3
.d

-1 
capacity MED plant with an energy requirement of 250 MW was 

investigated by Rezaei et al (2017). Different energy sources such as fossil fuels (coal, 

oil, and gas), combined cycle, pebble-bed modular reactor, and pressurized water 

reactor were used to produce electricity for the MED. The cost analysis indicated that 

the optimum plant is the one that is powered by the combined cycle. By consideration 

of costs and lifetimes of proposed energy sources, the combined cycle, pressurized 

water, and pebble-bed modular reactors were short-, medium-, and long- term strategies 

to generate electricity and to couple with MED. 

 

- 

- 
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Glossary 

 

AD : Adsorption desalination 

AH-HDH : Air heated humidification-dehumidification 

BF : Backward Feed is introduced in the last effect while the steam is 

introduced in the first effect. 

BPE : Boiling point elevation 

BR : Brine recirculation 

BR-MSF : Brine recycled multi-stage flash 

CAOW : Close air/open water cycle 

CCGT : combined cycle gas turbine 

CCPP : Combined cycle power plant  

CCST : combined cycle steam turbine 

CFD : Computational fluid dynamics 

http://www.eolss.net/Eolss-sampleAllChapter.aspx
https://www.eolss.net/ebooklib/sc_cart.aspx?File=E6-107-11
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CSP : Concentrating solar power 

ED : Electrodialysis - Electrodialysis desalination process transports 

salt ions from one solution through ion-exchange membranes to 

another solution under the influence of an applied electric 

potential difference 

ER : Entrainment ratio 

ETC : Evacuated tube collector 

FF : Forward Feed - Both Feed and Steam are introduced in the first 

effect. 

FF-MEE : Forward Feed - Multi-Effect Evaporation    

FO : Forward osmosis 

FPC : Flat plate collector 

GOR : Gained output ratio. A measure of thermal energy consumed in 

a desalination process. Number  of kilograms of distilled water 

produced per kilogram of steam consumed.  

GT : Gas turbine 

HEX : Heat exchanger 

HGT : Humidified gas turbines 

HRSG : Heat recovery steam generator  

LBT : Low brine temperature 

LT : Low-temperature 

LT–MEE–ABHP : Low-Temperature-Multiple Effect Evaporator -Absorption Heat 

Pum 

LT–MEE–EHP : Multiple-Effect-Evaporator-Ejector Heat Pump 

M :   Simple Mixer  

MED : Multi-effect distillation 

MEE : Multi-effect evaporation 

MIGD : Million imperial gallons per day 

MSF : Multi-stage flash 

MVC : Mechanical vapor compression 

OACW : Open air/close water cycle 

OAOW : Open air/open water cycle 

ORC :  Organic Rankine Cycle  

OT : Once through 

OT-MSF : Once through multi-stage flash 

P/CF :   Parallel/cross feed -Feed is distributed equally to all effects and 

brine leaving each effect is fed to the subsequent effect. 

P/W :  Power to Water ratio  

PCM : Phase change material 

PF :   Parallel Feed - Fresh Feed is introduced in every effect and 
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steam is introduced in the first effect. 

P-HEX : Plate type heat exchanger 

PR : Performance ratio 

PTC : Parabolic trough collector 

PV : Photovoltaic 

PVDF : Polyvinylidene fluoride 

RO : Reverse osmosis 

SAH : Solar air heater 

SEC : Specific Energy Consumption 

SFED : Siphon flash evaporation desalination 

SS : Solar still 

ST : Steam turbine 

STIG : Steam-injected gas turbine 

SWH : Solar water heater 

TBT :      Top Brine Temperature Maximum temperature of the brine 

during desalination process (top brine temperature (TBT) is in 

the range of 90-110 °C.) 

TDS : Total dissolved solids 

TES : Thermal energy storage 

TVC : Thermal vapor compression 

VOF : Volume of fluid 

VP-HDH : Varied pressure humidification-dehumidification  

WH-HDH :  Water heated humidification-dehumidification 

ZEDS : Zero-carbon emission desalination system 
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