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Summary 

 

Seawater desalination is a feasible option for diversifying a water-supply portfolio. 

Membrane-based technologies have been made particularly attractive by cost-effective 

and efficient subsurface feedwater supply processes and water treatment technologies 

developed to satisfy the globally increasing demand for water. Membrane distillation 

(MD) has emerged as a sustainable desalination technology when it utilizes low-grade 

waste heat, but membrane wetting is one of the main obstacles to its widespread 

industrial application. This chapter presents a broad review of wetting in the MD 

desalination process. Wetting characteristics and mechanisms, and detection methods 

are explained. Further, complex physical and chemical interactions between feed and 

membrane material during operation are highlighted. The dynamics of wetting and the 

effects of operational parameters are described in detail. The chapter concludes with 

two practical strategies for wetting control — membrane design and in-process 

approaches that are contrasted and an outlook on future developments. 

 

1. Introduction 

 

Desalination technology operates in three ways that involve pressure, electricity, or 

heat. Pressure desalination, or reverse osmosis (RO), is an important, energy-efficient 

desalination technology where pressurized seawater flows through a semi-permeable 

membrane to separate dissolved ions from seawater. In electrical desalination, an 

electric current de=ionizes the seawater. Finally, the oldest desalination technology is 

thermal desalination, where the water is purified by the phase change from liquid to 

vapor (Gilron, 2016). This requires more energy than pressure-based desalination and is, 

therefore, more costly. 

 

Membrane distillation (MD) has emerged as a promising thermal desalination 

technology that uses a membrane contactor (Sirkar et al., 2017). The membrane 

separation process is thermally induced and has been known for more than six decades. 
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MD can be used as a brine-concentration technology when RO is not applicable due to 

an excessive osmotic pressure difference between the two sides of the membrane 

(Sanmartino et al., 2016). Some properties of MD make it a competitive technology in 

specific applications, including treatment of brine (TDS >70,000 ppm), removal of 

volatile organic compounds, water purification in the pharmaceutical, chemical, and 

textile industries, and food and beverages concentration (Alkhudhiri and Hilal, 2018). 

 

Although MD is an attractive technology for desalination, it has some drawbacks. 

Central goals of research into MD desalination are increasing energy efficiency and 

reducing fouling and membrane wetting. Particularly in MD commercialization and 

research – but also in other MD application areas – membrane wetting is a crucial topic 

because it is related to the technology’s long-term stability (Thomas et al., 2017). 

 

Membrane wetting occurs when the feed solution penetrates the pores of hydrophobic 

membrane and affects permeate quality, flux, and process efficiency. Addressing this 

problem requires an accurate definition of membrane wetting and studies that 

characterize it and identify its causes (Rezaei et al., 2018). 

 

 
 

Figure 1. Principle of membrane distillation 

 

MD water desalination is considered a low-temperature operation, alternative to 

conventional separation technologies such as distillation for high-purity water 

production. It is a thermally driven process in which water-vapor pressure induced by 

the temperature difference across the porous hydrophobic membrane acts as the water 
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vapor transport force (Figure 1). The membranes in MD should allow passage of vapors 

only and retain non-volatile substances. Theoretically, the permeate quality is close to 

100% free from salts (Mohamed Khayet, 2011). MD membranes are produced from 

hydrophobic polymers, such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride 

(PVDF), and polypropylene (PP), by facile phase separation, stretching and 

electrospinning of flat sheets, and extrusion of hollow fiber membranes to ensure their 

optimal performance. Interestingly, heat energy, such as solar energy, geothermal 

energy, and low-grade waste-heat energy, can be used in the MD process (Bourouni and 

Chaibi, 2005). 

 

1.1. Principles and Configurations of MD 

 

In MD, mass is transferred through a porous hydrophobic membrane. (Curcio and 

Drioli, 2005). To achieve a vapor-pressure gradient, several module configurations, 

such as direct-contact membrane distillation (DCMD), air-gap membrane distillation 

(AGMD), sweeping-gas membrane distillation (SGMD), and vacuum membrane 

distillation (VMD), are used (Figure 2). Various MD configurations have been 

evaluated extensively for desalination of seawater (Alkhudhiri et al., 2012; A. K. An et 

al., 2017; Bonyadi and Chung, 2007; Ying Chen et al., 2017; Dong et al., 2015; 

Munirasu et al., 2017). On the lab scale, these configurations have shown high salt 

rejection (99%) and water fluxes (10 – 48 L•m-2•h-1) (Alkhudhiri et al., 2012; A. K. An 

et al., 2017; Bonyadi and Chung, 2007; Ying Chen et al., 2017; Dong et al., 2015; 

Munirasu et al., 2017; Nthunya, Gutierrez, Verliefde, et al., 2019; Nthunya, Gutierrez, 

Lapeire, et al., 2019). They have also been investigated to purify water sources 

contaminated with heavy metals and pharmaceutical and textile wastewaters (Criscuoli 

et al., 2008; ZW Ding et al., 2011; Zolotarev et al., 1994), and high separation 

efficiencies have been achieved.  

 

In DCMD, the hot solution (feed) and cold water directly contact the membrane 

surfaces. Water vapor is transferred from the hot feed side to the cold permeate side, 

where it condenses. The vapor gradient across the membrane transfers the water vapor 

due to the vapor pressure difference (Tomaszewska, 2000). Unlike otherwise stated, 

DCMD is hereafter considered the default MD configuration. Although this 

configuration is known to be susceptible to heat loss, Lee et al. (2011) achieved a 

thermal efficiency of 0.73-0.87 by using a countercurrent cascade, thus significantly 

improving MD. In AGMD configuration, only the hot feed is in direct contact with one 

membrane surface. The total length of vapor diffusion is the sum of membrane 

thickness and air gap distance. Stagnant air is introduced between the membrane's hot 

surface and the condensation side. Water vapor passes through the air gap to the 

membrane's condensation compartment (Alsaadi et al., 2013). This configuration has 

been applied in several contexts, for instance, to remove toxic metals from water by 

using an alumina-modified electro-spun PVDF nanofiber membrane with a contact 

angle close to 150° (Bajáková et al., 2011; Zolotarev et al., 1994). 

 

In SGMD configuration, an inert gas is used to sweep the vapor from the membrane's 

permeate compartment to the condensation compartment outside the membrane area. A 

mobile gas barrier prevents heat loss and facilitates mass transfer (M. Khayet et al., 

2003). Onsekizoglu (2012) has summarized the principles and limitations of and 
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advances in SGMD membrane configurations, including process fundamentals, 

membrane characteristics, membrane materials, membrane modules, process 

parameters, flux enhancement, and transport mechanisms, and polarization phenomena.  

 

In VMD configuration, a vacuum is created on the permeate side of the membrane. The 

water vapor is driven out of the membrane and condensed. In this configuration, heat 

loss is significantly minimized (Boukhriss et al., 2014). VMD has also been used in 

solar-energy-driven systems to recover water from polluted solutions (Khaled et al., 

2017; J. Mericq et al., 2011). 

 

Notably, in all configurations, the heated (feed or retentate) solution is in direct contact 

with the hydrophobic membrane. The hydrophobicity of the membrane allows water 

transfer in the vapor phase, while only the liquid phase of the water and non-volatile 

compounds is retained. For this reason, the volatile compounds are converted to the 

vapor state; then they diffuse through the membrane pores and are ultimately condensed 

and collected on the permeate/distillate side. The first MD patent was granted to Bodell 

in 1963, and the results achieved were first published in 1967. 

 

 
 

Figure 2. Schematic representation of the four different configurations commonly used 

in MD. 

 

1.2. Challenges in Membrane Distillation for Seawater Desalination 

 

Although MD is envisaged as a technology with great potential for seawater 

desalination, its performance is severely affected by two key factors: (i) wettability as a 

result of condensation of water vapor inside the pores of the membranes and (ii) fouling 

due to the accumulation of biofilm and organic, inorganic, and colloidal substances on 

the surface or in the internal pore structure of the membranes (Camacho et al., 2013). As 

previously stated, hydrophobic MD membranes should be used to prevent membrane 

wetting, but these are susceptible to fouling. Composite polymeric membranes with a 

hydrophilic support layer exhibit increased wettability, which affects water vapor 

diffusion through the membrane and compromises rejection efficiency (Manjula and 

Subramanian, 2006). As a result, numerous membrane modification studies have been 
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conducted to overcome the fouling and wettability challenges associated with MD 

membranes (Lim et al., 2009; Tijing et al., 2015). Although MD is a promising 

technology that has been widely tested on the laboratory scale, its industrial 

implementation has progressed at a slow pace. 

 

2. Wetting Phenomena in Membrane Distillation 

 

Membrane wetting involves complex physical and chemical interactions between feed 

and membrane material during operation (Alklaibi and Lior, 2005). Ideally, the non-

wetting liquid forms an interface at the membrane pores due to the hydrophobicity of 

the membrane. As a result of capillary action and high surface tension, the liquid feed 

forms a convex meniscus that impedes penetration of liquid into the membrane pore. 

Therefore, the liquid feed in contact with the membrane bulges into the pore until the 

capillary pressure arising from the curved interface's surface tension balances the 

pressure drop caused by the partial pressures of vapors and air across the membrane. 

When this pressure balance is disturbed, membrane wetting occurs, and the membrane 

starts to lose its hydrophobicity and allows water bridging across the membrane 

thickness (Rezaei et al., 2018). 

 

The fundamental cause of membrane wetting is a change in the conditions that result in 

the operating pressure exceeding the liquid entry pressure (LEP). The membrane 

resistance to pressure can be reduced by chemical and mechanical degradation, which 

typically occurs in long-term operation.  

 

Membrane fouling is the primary cause of a decrease in LEP, which results in wetting. 

The LEP is defined theoretically as the minimum transmembrane pressure required for 

the feed solution to penetrate the largest pores. Fouling refers to the deposition of 

material on the membrane surface and in membrane pores (Camacho et al., 2013; Gryta, 

2007; Hausmann et al., 2011; Tijing et al., 2015). Other causes of wetting include the 

presence of surfactants, which reduce the surface tension of the feed, capillary 

condensation, and membrane damage (Ge et al., 2014; J. G. Lee et al., 2018). A build-

up of foulant may reduce the LEP by enlarging the pore mouth, damaging the 

membrane (Elena Guillen-Burrieza et al., 2013), and clogging the pores (Kharraz et al., 

2015). 

 

2.1. Mechanism of Wetting 

 

Wetting in MD refers to liquid water permeation through membrane pores from the feed 

side to the permeate side. Membrane wetting decreases permeate quality by enabling the 

diffusion of salts or convective flow of feed to the permeate side. It is often less obvious 

in short-term experiments but has become the main issue in long-term MD operations 

(Marek Gryta, 2005a). Wettability of the MD membrane can be considered locally 

(from the pore perspective) and spatially (from the area perspective):  

 

We can distinguish at least four stages of membrane wetting, as shown schematically in 

Figure 3. Initially, a membrane is (i) non-wetted. As time passes, (ii) the surface of a 

membrane becomes wetted in more and more places, and the feed floods the pores on 

the membrane surface (surface wetting); (iii) the pores in the wall are then wetted, and 
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some of the wetted pores form channels connecting distillate with feed (partially 

wetted). Eventually, (iv) most of the pores undergo wetting, and the MD process stops 

due to full wetting. The stages of membrane wetting as presented in Figure 3 are 

determined based on the changes occurring in the membrane or by appropriately 

interpreting the data continuously collected during the MD process, for instance, on 

permeate flux and distillate electrical conductivity. 

 

Alternatively, the membrane can be viewed as having a heterogeneous degree of 

wetting: (a) A non-wetted membrane means no pore-wetting and thus maximum vapor 

transport, the highest flux, and complete salt rejection. A prolonged operation may 

result in (b) a surface-wetted membrane, where the gap for vapor transport is reduced, 

but feed water does not reach the permeate side. Surface wetting shifts the liquid/vapor 

interface inside the membrane pore and leads to a slight decrease in permeate flux due 

to temperature polarization, which lowers the temperature of the pore's evaporating 

interface (Gryta, 2016).  

 

 
 

Figure 3. The stages of membrane wetting during the MD process. NW: non-wetted; 

SW: surface-wetted; PW: partially wetted; and W: wetted. FP  and DP : hydraulic 

pressure on the feed and distillate sides, respectively 

 

Scaling due to super-saturation of the solute formed by solvent evaporation may occur 

inside the pores in the vicinity of the meniscus (Gryta, 2016). Further, crystal growth 

inside the pores accelerates scaling because it inhibits diffusive transport of solutes and 

solvent between wetted pores and the feed bulk, raising solute concentrations locally. 

When membrane pore size is widely distributed, (c) some of the pores can be 

thoroughly wet, which allows the feed water to permeate through them, while the vapor-

transport gap decreases in other pores. In this case, the MD process can be continued if 

most pores are dry. However, partial wetting can either decrease the permeate flux due 

to a reduction in active surface area for mass transport (Karakulski and Gryta, 2005) or 

increase it due to wetting of some pores (i.e., vapor transport is overtaken by liquid 

transport) but result in low solute rejection (Noel Dow et al., 2017). 

 

Interestingly, all hydrophobic membranes used in MD, such as PP, PTFE, and PVDF, 

have shown partial wettability in long-term use (Gryta, 2015). Any MD system treating 
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feed water without volatile components shows less than 100% rejection when 

experiencing partial wetting. Lastly, (d) full wetting of all pores in the membrane occurs 

when all membrane pores allow permeation of feed water, which significantly 

deteriorates permeate quality due to the penetration of contaminants. The membrane no 

longer acts as a barrier, which results in a convective flow of liquid water through the 

membrane pores, rendering the MD process ineffective (Rezaei et al., 2017). Note that, 

in an equipressure system (i.e., without trans-membrane pressure between the feed and 

the permeate side), low-rate salt transport via diffusion occurs. Significant loss of 

rejection is expected from the convective flow of the feed solution to the permeate side 

driven by pressure. Several mechanisms have been proposed to explain the occurrence 

of membrane wetting based on feed properties, operational conditions, system design, 

and membrane materials. 

 

2.2. Wetting Characteristics 

 

The easiest way to detect membrane wetting is by evaluating permeate quality, more 

specifically, conductivity. Theoretically, wetting-free MD results in complete salt 

rejection. When the membrane is wet, the solute can diffuse through the liquid along the 

membrane pore from the feed to the permeate side, which leads to an increase in 

permeate conductivity. This simple detection method is only valid when the feed does 

not contain any volatile component (e.g., ammonia or carbon dioxide), as this may also 

increase permeate conductivity (Warsinger, Servi, et al., 2017). In this case, more 

sophisticated methods are required to detect membrane wetting. Wetting can also be 

identified visually by a change in membrane opacity from opaque (dry membrane) to 

transparent (wet membrane) (Noel Dow et al., 2017; Jacob et al., 2019). Alternatively, 

wetting can be detected by a change in transmembrane pressure or by membrane 

autopsy. 

 

As discussed earlier, the LEP is an accurate measure of wetting, and its value can be 

used as a direct method for predicting the likelihood of membrane wetting. 

Theoretically, the membrane should have an LEP > 0 to avoid instant wetting, but – in 

practice – it should be greater than the pressure applied for MD operation. The LEP is 

affected by the interfacial tension of the feed, the membrane contact angle, the 

membrane surface structure, and pore size (Rezaei and Samhaber, 2016). The LEP can 

be measured by two approaches: statically via bubble point (Smolders and Franken, 

1989) or dynamically via the MD test. However, the latter has been abandoned because 

membrane compaction during the test affects measurement (Durham and Nguyen, 

1994). A simple method for membrane characterization is measuring the contact angle 

between feed droplet and membrane surface (Eykens et al., 2017), which gives the 

relative wettability of a membrane by the liquid tested. If the contact angle of the feed 

water solution is < 90°, instant wetting is expected. However, immediate non-

wettability is seen as less relevant in predicting wetting during MD operation. The 

(static) contact angle between liquid droplet and membrane surface is measured by a 

goniometer as the angle between flat membrane surface and a line tangent to the drop's 

curved face at the point of three-phase contact (Onsekizoglu, 2012). The advancing 

water-contact angle is associated with membrane hydrophobicity, and the receding 

angle is related to the degree of molecular reorientation necessary to create a new 

equilibrium with the aqueous solution (Mohamed Khayet and Matsuura, 2004). The 
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contact angle is easy to measure, but it can show hysteresis and is influenced by the 

membrane's surface structure (roughness) (Adamson and Gast, 1997). Information on 

membrane properties (bubble point) combined with the contact angle allows the liquid 

entry pressure to be estimated; thus, no compounding effect of compaction affects the 

results. This method has been widely used in MD membrane development to evaluate 

wettability. 

 

Less popular methods for membrane-wetting analysis involve penetrating drop 

concentration, sticking bubble, and temperature penetration. A comprehensive overview 

can be found elsewhere (Rezaei et al., 2018). 

 

2.3. Methods of Wetting Detection 

 

Feed solution can be contaminated with compounds that reduce surface tension (e.g., 

surfactants) and cause water penetration into the membrane pores. In such cases, 

wetting can be reduced by using a modified membrane. However, it cannot be 

universally non-wettable; So, the membrane must be modified according to the feed 

water properties. Two fast and straightforward pre-selection methods are the drop test 

and the buoyancy test (see Figure 4). In the former, the shape of the feed droplet on the 

membrane surface is observed. A membrane on which the droplet spreads or infiltrated 

by the droplet is not suitable for MD of the feed water. In the latter method, a piece of 

membrane is placed on the feed surface; if it does not sink, it is suitable for MD of the 

feed water used in the test (Ahmed et al., 2017). 

 

 
 

Figure 4. Two approaches to determining a membrane’s resistance to wetting: A) water-

drop test and B) buoyancy test. NW: non-wetted; W: wetted 

 

Choosing the best membrane from those that have successfully passed these two tests 

requires further research, such as contact angle (CA) measurements. Membranes with a 

CA greater than 90˚ are assumed to be resistant to wetting by the feed water used. 

However, CA measurements relate only to a membrane’s surface properties, while 

wetting usually depends on the entire wall cross-section properties. Hence, even if its 

CA value is slightly lower than 90˚, a membrane may prove suitable for the MD of the 

feed water it was tested with. For example, polypropylene membranes, which exhibit a 

CA of 86˚ for de-mineralized water, are not wetted by this feed in continuous MD 

operation over several months (Marek Gryta, 2005b). 
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The efficiency of the MD process is determined by the vapor pressure at the feed/pores 

interface, which depends on feed temperature and concentration. Since polarization 

phenomena reduce this pressure, ensuring suitable hydrodynamic conditions in the 

module is vital. This requires a corresponding increase in the feed-flow velocity, which, 

however, also increases the hydraulic pressure. Consequently, the membrane must 

exhibit the highest possible LEP, which forces the liquid into the pores. Wetting also 

depends on pore size; a good LEP value above 0.1 MPa is usually obtained for 

membranes with a pore diameter below 0.2 µm. 

 

Although these tests help in selecting a suitable membrane, evaluating the resistance to 

wetting requires MD tests, preferably under conditions similar to those in an industrial 

installation. Due to scaling, fouling, and degradation of the membrane matrix, 

membrane pores start to fill with the feed during the MD process, even if a membrane 

with favorable CA and LEP has been selected. This can be counteracted by choosing an 

appropriate matrix material and membrane-surface morphology. Assessment of new 

membranes' effectiveness is complex because the wetting process may proceed very 

slowly. The majority of MD membranes resistant to wetting do not show significant 

changes during the first 100-200 hours of operation of the module, so in many cases, 

MD process tests must run for over 1000 hours (Gryta, 2005). The wetting detection 

methods depend on the module operating time and the degree of wetting present. 

 

A typical course of changes in permeate flux and conductivity is shown in Figure 5. 

Initially (membrane in the non-wetted state), the flux is stable, and the distillate 

obtained has a low conductivity, usually at the level of 2-3 µS/cm. Conductivity 

remaining constant while the permeate flux increases slightly is an indication of 

membrane-surface wetting. In this case, the flux increases because the thickness of the 

gas layer in the wall decreases, which reduces mass transport resistance. By advancing 

the wetting in the pores, the thickness of the gas layer reduces further, but at the same 

time, the resistance to heat transport from the feed to the evaporation surface increases, 

which lowers its temperature. As a result, the permeate flux starts to decrease 

systematically, but the distillate's purity does not deteriorate, as a gas layer still 

separates the feed. When distillate conductivity starts to increase gradually during the 

MD process (Figure 5, from 250 h), the partial-membrane-wetting stage has been 

reached. 

 

The course shown in Figure 5 applies when the hydraulic pressure values on the feed 

and the distillate side are similar or when D FP P . Otherwise, for F DP P , when the 

partial wetting stage has been reached, feed leakage through the membrane will occur, 

which causes an increase in the amount of water obtained on the distillate side and a 

sharp increase in the specific conductivity of the distillate (Chamani et al., 2018). 

 

An essential step in studying membrane wetting is to evaluate the effect of drying. To 

this end, the MD process is interrupted, and the membranes are thoroughly rinsed with 

distilled water and then dried (e.g., by blowing warm air through the module). If, after 

restarting the MD process, permeate flux increases significantly while distillate 

conductivity decreases (the case presented in Figure 5), the tested membranes were 

wetted in the MD process. 
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Figure 5. The course of changes in permeate flux and distillate conductivity as a result 

of progressive membrane wetting. D – membrane drying 

 

Gas flux measurements of the membranes assembled in an MD module can be used to 

test the degree of surface wetting. In the case of a dry membrane, the gas flux increases 

linearly with increasing gas pressure. If the pores at the surface of the membrane are 

wet, they block the gas flow. The gas pressures used in these measurements are usually 

much lower than the LEP, so the gas cannot force the liquid out of the pores. If the 

measuring system is supplied with dry gas, the membrane surface dries out, enabling 

gas flow. As the measurements continue, the water evaporates from the pores 

consecutively, which increases the gas flow. In this case, the gas flux value obtained 

depends not only on the gas pressure but also on the degree of surface wetting and the 

duration of measurements (drying time). For this reason, and while maintaining 

repeatability of the measurement sequences, it is possible to demonstrate the effect of a 

particular period of MD module operation on the degree of membrane wetting, as 

shown in Figure 6. 

 

 
 

Figure 6. Changes in gas flux indicating differences in the degree of wetting of the 

membrane surfaces 
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Other methods are relevant in the laboratory context and include measurement of 

permeate electroconductivity, transmembrane impedance (Chen et al., 2017), and 

optical transmittance (Jacob et al., 2019). The laboratory methods are also used to 

determine changes in the membrane wall but require membrane autopsy. One of the 

most frequently used techniques is scanning electron microscopy combined with 

energy-dispersive X-ray spectroscopy (SEM-EDX). Preparation of a membrane sample 

for SEM testing completely removes water from the pores, but the dissolved salts 

remain and are deposited in the wetted pores. The SEM-EDX line analysis helps to 

detect salt components of surface pores and allows them to assess the fragments of the 

wetted wall during the MD. Some salts, such as NaCl and KCl, tend to crystallize at the 

edges of the pores. In this case, SEM observation of the dried membranes on the 

distillate side enables detection of the places where the pores have formed wetted 

channels through the membrane wall (Figure 7). 

 

 
 

Figure 7. Scanning electron microscope (SEM) images of membrane surface on the 

distillate side with NaCl crystals (composition confirmed by SEM-EDX analysis) 
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