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Biographical Sketches 
 
Summary 
 
This section describes a toolbox of models and decision support systems that is 
maintained and developed at the Laboratory for Ecotoxicology of the National Institute 
of Public Health and the Environment to assess the fate of environmental pollutants and 
the potential and actual risk of such compounds for ecosystems in relation to other 
environmental stresses. This toolbox is applied to support the governments of The 
Netherlands and the European Union. 
 
It comprises models (SimpleBox and SimpleTreat) to assess the fate of pollutants in the 
environment and in waste water treatment plants, respectively, based on emission data 
and knowledge on physical and chemical characteristics of pollutants and the 
environment. Both fate models are comprised in EUSES, the decision support system 
(DSS) of the European Union for the Evaluation of Substances. 
 
Dependent on physico-chemical characteristics of contaminants, the environment and 
the specific organisms, organisms may, or may not, be exposed to a specific chemical, 
and this chemical may have an effect. The research that is being done on this 
bioavailability concept of compounds, and its impact is described here. 
The concept used to assess exposure to, and effects of pollutants, is based on the 
determination of species sensitivity distributions (SSDs), derived from laboratory 
toxicity tests. Therewith environmental quality criteria can be, and are, derived. On the 
other hand this approach is applied to determine the fraction of organisms in ecosystems 
that is being exposed to concentrations of contaminants that exceed certain 
ecotoxicological criteria, based on knowledge of concentration and bioavailability of 
contaminants (PAF, Potentially Affected Fraction). The technique is being improved to 
assess potential effects, not only of single compounds, but also of mixtures. 
 
To validate the approach the pT methodology has been developed, to determine total 
toxicity of known and unknown mixtures of contaminants in surface waters. 
 
Environmental quality criteria for environmental pollution are derived from laboratory 
toxicity tests. We use several tools to validate the criteria, e.g. the PICT (Pollution 
Induced Community Tolerance) approach, in which adaptation of field communities to 
contaminants is determined, showing that the organisms indeed have experienced the 
presence of contaminants, and that they exert certain effects. 
 
Based on a triad approach a DSS is being developed to assess effects of contaminants 
on specific sites, and to determine the necessity to take certain management measures to 
facilitate a certain use of the site, taking chemical, ecological and ecotoxicological data 
about the site into consideration.  
 
Besides environmental contamination with pollutants there are other stresses on 
ecosystems, such as desiccation, eutrophication, acidification, climate change, certain 
types of management (e.g. agriculture). The relation between these stresses and the 
relative contribution of different stresses to the total environmental impact is 
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investigated using statistical techniques, and in the development of a biological 
indicator for soil quality, a food web based indicator based on monitoring data of the 
soil fauna in relation to data on contamination and management of land. It is one of the 
possible tools that can be applied also to assess the sustainability of land use. 
 
Finally some results are shown of an Integral Analysis Method where of the relative 
contribution of different environmental stresses on the impact measure "decrease of the 
possibility of the occurrence of groups of species" (vascular plants, butterflies, birds and 
mammals) is determined. 
 
1. Methodologies for Ecological Assessments 
 
Ecological risk assessment seeks to assess the fate of compounds entering the 
environment and their risks and impacts on ecosystems. To do this, models and 
indicators are developed to assess the integral effects of toxic compounds and other 
types of environmental stresses in natural conditions. Ecological risk assessment also 
needs decision support systems for risk management (i.e. site specific risk assessment 
and ecosystem health assessment).  
 
A variety of techniques is used to assess ecological risk, and “classical” measures of 
ecosystem performance and life support systems are especially important. The following 
techniques are detailed: 
 
1. Using the specific models SimpleBox and SimpleTreat, the fate of contaminants 

entering the environment is assessed based on information about emissions and the 
chemical, physical and biological (biodegradation) characteristics of the compounds. 
Bioavailability considerations also allow for the exposure of biota to pollutants to be 
assessed. 

 
2. In the Species Sensitivity Distribution (SSD) approach, bioavailability data and 

toxicity data are integrated into statistical models in order to predict toxic effects on 
ecosystems. Environmental quality criteria (EQCs) are derived based on SSDs; and 
SSDs are also used to predict the toxic stress of mixtures of toxic chemicals upon 
ecosystems. To validate the SSD-methodology, indicators are being developed to 
measure ecological effects of the presence of toxicants in field (as opposed to 
laboratory) situations (PICT, Pollution Induced Community Tolerance). 
Furthermore, an indicator to validate the PAF (potentially affected fraction of 
species) concept in aquatic ecosystems is the pT methodology, in which toxic 
compounds are extracted from water and the undefined mixture is tested in 
laboratory toxicity tests. This indicator is being applied to monitor the spatial and 
temporal variation in total toxicity of Dutch surface waters. For soil, pT 
methodologies are still under development. 

 
3. Besides toxic stress, ecosystems face other stresses, such as desiccation, 

acidification and eutrophication as well. Using non-linear multiple regression 
techniques, the combined effects of these stresses are being analysed, resulting in an 
estimate of the relative contribution of different kinds of stress on species in 
ecosystems. For terrestrial plants the MOVE model, originally developed to estimate 
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the effects of eutrophication, acidification and desiccation, was adapted to 
incorporate toxic stress. Similar models are under development for aquatic and soil 
organisms. This approach yields insight into what the best investments toward risk 
mitigation efforts would be for an optimal reduction of national or regional 
environmental stress effects. Eventually, to assess the ecological effects of 
pollutants in multi-stress field situations, indicators will be developed that can be 
used to validate the environmental quality criteria and to assess the ecological 
quality of natural systems. 

 
4. These methodologies provide tools and decision support systems to assess the 

ecological effects of environmental stress based on knowledge of the concentration 
or strength of stressors in the field. The utility of these tools has been validated 
primarily in the Netherlands, but they can be used anywhere in the world to assess 
the extent of ecological damage without having to perform direct ecological field 
observations. This approach is useful as a first stage for damage assessment or for 
local and regional assessments and scenario analyses. 

 
2. Assessment of the Concentration and Fate of Toxicants in the Environment 
 
2.1 Simplebox 
 
SimpleBox is a multi-media environmental model that can be used to calculate the fate 
and concentration of chemicals in a given environment if the emission of the chemical is 
known. By defining the characteristics of the environment, it may be used to calculate 
the concentration in a region, country or continent. In SimpleBox, homogeneous boxes 
represent the various environmental compartments (air, water and soil, see also 
description further). SimpleBox is a generic model, but it can also be customised to 
represent specific environmental situations. Transfer and transformation of substances 
are treated as first-order processes. Boxes in SimpleBox represent environmental 
compartments (see below). The concentration of a chemical in each box is affected by 
processes that cause mass flows of the chemical to and from the box. The chemical can 
be an INPUT coming from outside the system into a box, an OUTPUT leaving a box, or 
a product entering or leaving a box by means of transport to and from other boxes.  
 

 
 

Figure 1.  SimpleBox 2.0 model 
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If mathematical expressions that relate the mass flows to the chemical concentrations 
are available, the set of mass balance equations (there is one for each box) can be solved 
and the chemical concentrations in each of the boxes can be computed.  
 
The SimpleBox model consists of different spatial scales: a regional scale, a continental 
scale and a global scale. The global scale consists of three parts that reflect the arctic, 
moderate and tropic geographic zones (Figure 1). The default settings of the regional 
and continental scale of the model are set to match the EU procedures for the evaluation 
of substances. In this case, the regional scale is represented as a densely populated 
Western European region. The continental scale is a copy of the regional scale with 
adjusted parameters to represent the whole European region. The global scales are 
added to serve as background for the continental and regional scales. 
 
Compartments: The regional and continental environments that are modelled consist 
of ten homogeneous environmental compartments: air, two separate water 
compartments, sediments, three separate soil compartments, and vegetation on natural 
and agricultural soil. The global scales consist of 4 homogeneous compartments: air, 
water, sediment and soil. The atmospheric phases gas, rain, and aerosol and the 
terrestrial phases solids, water, air and roots are considered to be in a state of 
thermodynamic equilibrium at all times. 
 
The aquatic phases (water, suspended particles, and biota) are treated as a bulk 
compartments (this means that in the overall description of these compartments it has 
been taken into account that it consists of water, suspended solids and sediment, but 
these constituents are not described separately) and are also considered to be in 
thermodynamic equilibrium. The water compartments represent a fresh-water (lakes, 
rivers, etc.) and seawater compartments.  
 
The soil compartments can be used to define different geographic areas, different soil 
types or different soil uses. In SimpleBox, the soil compartments stand for natural, 
agricultural and industrial/urban-use soil. Vegetation is situated on natural soil and 
agricultural soil on the regional and continental scale, with different parameter settings 
for each vegetation compartment. 
 
Two important applications of the SimpleBox model in environmental policy are its 
incorporation by the European Union in the DSS EUSES (Decision Support System of 
the European Union System for the Evaluation of Substances) and its use in the 
Netherlands in the evaluation of the coherence of independently derived environmental 
quality criteria for air, water and soil. The latter use, also called “intercompartmental 
evaluation of risk limits,” should preclude soil EQC (Ecological Quality Criteria, see 
further on) from threatening water systems (i.e. through runoff). 
 
2.2 The SimpleTreat Model 
 
SimpleTreat 3.0 is a model that predicts the distribution and the elimination of 
chemicals by sewage treatment plants (STP), and it is also useful for a generic exposure 
assessment resulting from STP operations. The accuracy of such an exposure 
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assessment, in particular for the water compartment in urban regions, is largely 
determined by the accuracy with which the chemical fate in STP can be predicted. 
 
In the SimpleTreat model, chemical transport and transformation processes cover a wide 
range of compound properties and scenarios. Emission of substances via sludge 
production may account for the presence or absence of the primary sedimentation 
technique, which is the separation of sludge solids in raw wastewater from the liquid 
phase prior to the biological treatment. 
 
Many chemicals that are used domestically, commercially, and industrially, including 
non-agricultural pesticides, are discharged to sewer systems. In urban regions, most of 
these sewer systems are connected to STP, so SimpleTreat can be applied to estimate 
the relative emission of a chemical from a STP to the various environmental 
compartments. For a readily biodegradable chemical, the amount of a chemical 
eliminated due to biodegradation is also calculated. All processes that determine the fate 
of a chemical are assumed to be linear, which means that they occur at a rate that is 
proportional to the concentration of the chemical in the various media in which the 
chemical resides. The SimpleTreat model is also incorporated into the EUSES decision 
support system.  
 
2.3 Bioavailability of Chemicals 
 
A main characteristic of soil ecosystems is their heterogeneity. In addition, there is an 
enormous variance of both the numbers and biodiversity of organisms in the ecosystem 
and the numbers of physico-chemical soil properties that directly or indirectly affect 
specific species within a given ecosystem. Toxic effects will occur as a consequence of 
a number of external (outside organisms) and internal (within organisms) transport 
processes of chemical compounds. In their turn, these processes depend on a large 
number of species and soil type dependent factors.  
 
The response of specific soil dwelling organisms to soil heterogeneity and to soil 
composition in terms of physico-chemical soil properties is still insufficiently 
understood to allow for accurate prediction of adverse effects of pollutants on soil 
ecosystems. Furthermore, the differences in the bioavailability of chemicals among soil 
ecosystems are not taken into account sufficiently in ecological risk assessment.  
 
Recently, a conceptual framework based upon the concept of toxicological 
bioavailability as defined by Hamelink et al. (1994) was developed for the 
implementation of metal bioavailability in ecological risk assessment. The concept of 
toxicological bioavailability assumes that adverse effects will take place only when the 
concentration of a pollutant within an organism has exceeded a metal- and species-
specific critical level, a level that the organism can handle (the so-called critical body 
burden). Although examples exist in which the concept of toxicological bioavailability 
is invalidated, research within our laboratory seeks to unravel the component processes 
of bioavailability and to quantify the impact of soil-related properties on differences in 
bioavailabilities of chemicals among ecosystems. Although this approach has been 
described for metal bioavailability, it is also applicable to the bioavailability of other 
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compounds. As shown in Figure 2, three main processes may be distinguished: chemical 
bioavailability, environmental bioavailability, and toxicological bioavailability. 
 
The concept of chemical bioavailability is not, in its present form, suitable for inclusion 
in ecological risk assessment schemes. Its essential feature is that it will enable the 
prediction of adverse chemical effects on soil organisms and plants on the basis of a 
limited number of soil and pore water properties and on a limited number of metal 
pools. Metals are present in ecosystems in different forms: dissolved, adsorbed, 
complexed, reduced, oxidised and chemically bound. Depending on the analytical 
procedure used for measuring metal concentrations, a different fraction of the total 
amount of metal present is determined. The result of one type of analysis is called a 
“metal pool.”  
 
A metal pool gives an indication of how a metal is present in the soil. Proper inclusion 
of bioavailability in ecological risk assessment requires toxicity data that is based upon 
truly bioavailable metal pools (the fraction of a metal that may interact with an 
organism, depending on the organism, the metal, and the soil properties). Thus the 
impact of soil properties on metal uptake and metal toxicity is taken implicitly into 
account. This will allow for the proper extrapolation, for instance, of laboratory-derived 
toxicity data to the toxic effects that will occur under field conditions. Further research 
in the area of metal bioavailability is aimed at substantiating and validating the methods 
that allow for this type of extrapolation. 
 
2.4 Chemical Availability of Metals for Uptake by Soil Dwelling Organisms 
 
Soil-related processes that affect metal partitioning over the various soil constituents 
govern chemical availability, so only physico-chemical properties need to be 
considered. The (physico-chemical) availability of metals is shown schematically in 
Figure 2 by means of (equilibrium) partitioning of a metal over the soil solid phase (the 
soil fraction remaining after drying the soil) and the pore water (water present between 
the soil particles) (Figure 2, left). As shown, metal partitioning is, in principle, 
dependent upon a large number of soil properties (though pH is often the most 
important parameter). An empirical approach was followed to quantify the impact of 
soil properties on metal availability, and models were developed that enable the 
quantitative prediction of metal partitioning in soils with widely varying soil properties.  
 
2.5 Environmental Bioavailability 
 
Organism-specific chemical transport processes (accumulation and elimination) play a 
central role in environmental bioavailability. A dynamic equilibrium will be established 
between the content of pollutants in the soil that is available for uptake by a specific 
species and the levels within this organism, which depend upon both external and 
internal (organism-specific) factors. This dynamic equilibrium is a consequence of 
pollutant partitioning within the soil and is dependent on the organism-specific uptake 
routes of pollutants (i.e. via pore water, soil ingestion, or food consumption). 
 
Environmental bioavailability is envisaged by means of toxicokinetic uptake 
characteristics, which are the chemical uptake rate constant, k1, and the organism’s 
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internal equilibrium level, C(eq), and the rate of elimination of toxicants is of 
importance. Similarly to the approach followed to quantify metal availability, an 
empirical approach was followed to quantify the impact of soil properties on the 
environmental bioavailability of metals. Models were developed that may be used to 
calculate internal steady-state metal levels within a number of soil organisms. In 
addition to metals, the accumulation of organic chemicals in earthworms has also been 
studied to help determine their environmental bioavailability. 
 
2.6 Toxicological Bioavailability 
 
Internal (re)distribution processes govern the toxicological bioavailability concept, 
which includes the transport of chemicals to specific targets for toxic substances, the 
possible inert storage of metals in specific organs, and the additional detoxification 
mechanisms (right-hand side, Figure 2). Until now, only limited attention has been paid 
to the toxicological aspect of the bioavailability concept. 

 
 

 
Figure 2.  Schematic Representation of the Underlying Processes of the Bioavailability 

Concept 
 

2.7 Bioavailability and Biodegradation 
 
In principle, the bioavailability concept developed for metals also holds for organic 
contaminants and environmental bioavailability especially influences the biodegradation 
of organic compounds by bacteria.  
 
In general, bacteria degrade organic compounds that have been taken up in their cells, 
and to be able to take up these compounds they have to dissolve (enter the aquatic phase 
as a single molecule), or desorb (detach from the solid phase of soil) therefore, 
hydrophobic and sorbed (attached to soil particles) pollutants such as polycyclic 
aromatic hydrocarbons are poorly degradable because bacteria do not take them up.  
 
Based on laboratory experiments, a model has been developed to predict the 
biodegradation rate as a function of the desorption and dissolution rates of organic 
compounds. Often the extracellular (outside bacteria) transport processes of the organic 
compounds, especially of hydrophobic organic compounds, and not the capacities of the 
degrading organisms, limit the rate of biodegradation. 
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