RODENTICIDES

Kramer R.E. and Baker R.C.
Department of Pharmacology and Toxicology, University of Mississippi Medical Center, U.S.A.

Keywords: Fluoroacetate, sodium monofluoroacetate, compound 1080, fluorocitrate, fluoroacetamide, compound 1081, 1,3-difluoro-2-propanol, DFP, thiourea, α-naphthylthiourea, ANTU, pyriminil, PNU, Vacor, bromethalin, vitamin D, cholecalciferol, ergocalciferol, norbormide, scillirosides, scillirosidin, glycosides, α-chlorohydrin, thallium, phosphorus, zinc phosphate, aluminum phosphide, phosphine, strychnine, anticoagulants, brodifacoum, bromadiolone, chlorophacinone, coumachlor, difenacoum, diphencoumarin, difethialone, diphascinone, flocoumafen, pindone, warfarin, vitamin K, mechanisms of action, toxicity, treatment; antidotes

Contents

1. Introduction
2. Fluoroacetate derivatives
 2.1. Sodium Monofluoroacetate
 2.2. Fluoroacetamide
 2.3. 1,3-Difluoro-2-propanol
3. Thiourea Rodenticides
 3.1. α-Naphthylthiourea (ANTU)
 3.2. Pyriminil
4. Bromethalin
5. Vitamin D-based rodenticides
6. Norbormide
7. Scilliroside
8. Alpha (α)-chlorohydrin
9. Thallium
10. Yellow phosphorus
11. Zinc phosphide
12. Strychnine
13. Anticoagulant rodenticides
Glossary
Bibliography
Biographical Sketches

Summary

A rodenticide is defined as any compound used to kill rodents or other small animals. They are widely used, and as a class encompass a disparate group of compounds with differing structures and mechanisms of action.

Rodenticides can be subdivided into inorganic and organic compounds. Inorganic rodenticides include agents such as arsenic salts, thallium, phosphorus, zinc phosphate and barium salts. They are considered highly toxic, exhibiting single-dose oral LD50
values for rats of 50 mg kg\(^{-1}\) or less, based on the ingestion of the commercially available product and including both active and inert ingredients. The estimated lethal dose for inorganic rodenticides ranges from 1 mg kg\(^{-1}\) for elemental phosphorus, 3-7 mg kg\(^{-1}\) for sodium monofluoroacetate, to 13-14 mg kg\(^{-1}\) for sodium fluoroacetamide and thallium. The mechanisms of toxicity for the inorganic rodenticides is as variable as the agents. Thallium interacts with sulphhydryl moieties within mitochondria, interfering with oxidative phosphorylation. Likewise, arsenic inhibits the activity of a variety of enzymes through binding to sulphhydryl groups. Fluoroacetate derivatives disrupt the Kreb’s cycle by serving as competitive substrates. Both barium and strychnine act, directly or indirectly, to block motor neuron activity, and phosphorus causes severe local irritation and burns followed by gastrointestinal, hepatic and renal dysfunction.

Organic rodenticides include fluoroacetate derivatives, thiourea-based agents, derivatives of vitamin D, short- and long-acting anticoagulants, red squill, norbormide and strychnine. Of these, pyriminil is designated as being highly toxic, with an estimated fatal dose of 5 mg kg\(^{-1}\). Its primary mechanism of toxicity appears to be interference with nicotinamide metabolism, resulting in dysfunction in a number of tissues including the central and peripheral nervous systems, the heart and the pancreas. \(\alpha\)-Naphthylthiourea, which causes acute pulmonary toxicity, and vitamin D-based rodenticides, which cause hypercalcemia with predictable sequelae, are considered moderately toxic; oral LD\(_{50}\) values for commercially available preparations range between 50-500 mg kg\(^{-1}\). Some other organic rodenticides are designated as having low toxicity with LD\(_{50}\) values in excess of 500 mg kg\(^{-1}\). Norbormide appears to be selectively toxic to rats. It causes vasoconstriction through a norbormide-specific receptor on rat vascular smooth muscle, and there have been no reported cases of systemic toxicity to norbormide in humans. Red squill is a glycoside and, as such, causes both cardiotoxicity and convulsant effects. Bromethalin uncouples oxidative phosphorylation. Concomitant depletion of cellular ATP has functional consequences on all cell types, but effects within the central and peripheral nervous systems are most pronounced. Although bromethalin has a reported LD\(_{50}\) in rats of 2 mg kg\(^{-1}\), the potential for bromethalin poisoning in humans is considered to be low. Warfarin and its more-long acting counterparts are anticoagulants, and death ultimately results from internal hemorrhage.

In the light of the mechanisms of action of many of the rodenticides, it is of no surprise that they are not selectively toxic to rodents. Variable toxicities to humans and other non-target species have been described. In relation to toxicity to humans, some groups of people are at greater risk than others from exposure to rodenticides. Exposure to rodenticides, particularly the more toxic agents, is an occupational hazard for pest control applicators. Intentional poisoning with rodenticides in cases of suicide (attempted or otherwise) or homicide have been reported. Individuals who abuse alcohol or other drugs, as well as people who suffer psychological disorders may be more prone to unintentionally ingest rodenticides for one reason or another. Likewise, children and the elderly may be more susceptible to the adverse effects of intentional or unintentional exposure to rodenticides.

In the United States, most human toxicities involve accidental poisoning of children, typically children younger than 6 years old. There are relatively few deaths, however,
and the deaths that do occur as a result of poisoning with known rodenticides are attributable to strychnine or the long-acting anticoagulants. Although the latter are considered to have only a low potential for toxicity in humans, they are available commercially for residential use. Thus, children are more likely to be exposed to the long-acting anticoagulant rodenticides than they are to more toxic agents with a more restricted use. Also repeated ingestion, in combination with their prolonged action, can be problematic in children.

The rodenticides have been described extensively in the scientific literature. Although limited in some cases, information regarding their physical properties, practical considerations in relation to their use as bait, mechanisms of action, and appropriate therapeutic intervention in cases of human toxicity is available. This review represents a compilation of that material. However, it should not be considered complete in and of itself. The reader is encouraged to consult the primary references as well as other reports for greater detail. Additional information can also be obtained from any number of textbooks on the principles of toxicology and the medical management of the poisoned patient.

1. Introduction

Rats and mice, when unchecked, can have a significant socioeconomic impact on humans. The control of rodent populations comprises an important component of post-harvest food protection, notably of grain and cereal crops. The ability of rats as well as other rodents to serve as vectors for human disease also brings the animals into the realm of public health. In settings in which sanitation is compromised and rats and humans are in close contact, reduction (if not complete eradication) of rodent populations is obligatory for effective prevention and containment of disease.

A variety of products have been designed specifically to kill rats and mice. These products, or rodenticides, consist of a wide range of inorganic and organic chemicals with diverse structures, mechanisms of action, effectiveness, and toxicities to non-target species including humans. Some rodenticides occur naturally in plants, whereas others are derived synthetically. In some cases, a metabolic process or a biochemical characteristic unique to the rat is targeted in an effort to diminish toxicity to other animals. For most rodenticides, however, the site and mechanisms of action are common across animal phyla and between species. Thus, with the use of most rodenticides, secondary poisoning to non-target species can be significant. Such non-specific toxicity associated with some agents has led to their application in the control of other small animal pests; for example, opossum, squirrels, moles, gophers, birds, bats, as well as small mammalian carnivores such as coyotes and foxes. It also increases the concern about potential toxicity to humans.

For any rodenticide to be effective, it must be accepted by the target species. Ideally, the rodenticide is lethal in a single dose and has a high lethal efficiency within the population. Long-term control also requires that the rodent population as a whole does not develop resistance to the poison. Characteristics of the ideal poison are only partially met by most rodenticides. The first is often achieved by mixing the rodenticide with food. Unfortunately, this tactic makes the poison attractive to other animals and, in
domestic settings, to children. Learned avoidance and development of tolerance continue to drive the development of rodenticides with different mechanisms of action to maintain effective control of commensal rodent populations. For the most part, complete eradication of rodents or other pests is impractical. The best that can be hoped for is stabilization of an acceptable population through the use of a combination of methods, often utilizing a number of different rodenticides.

The potential hazard associated with the use some rodenticides can be offset to some extent by application strategy (location, presentation), and the relative dosages at which toxicity develops between target and non-target species. In some cases, the immediate physiological response (e.g., regurgitation) to ingestion of the chemical or an adjuvant in the formulation can minimize poisoning to non-target species while maintaining effectiveness in rats. In the case of humans, restrictions on the use of highly toxic rodenticides to licensed applicators or appropriate government officials figure prominently in reducing the frequency of unintentional poisoning. For those rodenticides that are readily available “over-the-counter”, knowledge about proper handling and potential toxicities are equally important.

2. Fluoroacetate Derivatives

2.2. Sodium Monofluoroacetate

Sodium monofluoroacetate (SMFA or compound 1080) is a highly toxic single dose rodenticide. It is the sodium salt of fluoroacetate, a compound which occurs naturally in a number of poisonous plants throughout the world (e.g., *Acacia* and *Leguminosae* (Australia), *Dichapetalaceae* (South Africa), and *Palicourea* (South America). Sodium monofluoroacetate is highly effective against all types of rodents, and is used in some countries for the control of exotic vertebrate pests such as cats, opossums, rabbits and foxes. It is applied as single-lethal-dose baits or as a toxic collar on the prey of targeted pest. Oral LD$_{50}$ values in mice and rats are 2-3 mg kg$^{-1}$, and those in other mammals are between 0.03 mg kg$^{-1}$ and 1 mg kg$^{-1}$. The oral LD$_{50}$ for sodium monofluoroacetate in humans is estimated at 0.7-5 mg kg$^{-1}$. Poultry, with an LD$_{50}$ of 10-30 mg kg$^{-1}$, are less sensitive to sodium monofluoroacetate than are mammals. Due to its toxicity, sodium monofluoroacetate is best used in settings where the potential for secondary poisoning of non-pest species is minimal or where public access can be controlled. In some countries, including the U.S., the application of sodium monofluoroacetate is strictly controlled, and its use is restricted to licensed exterminators or Public Health officials.

Because of its chemical stability, water solubility and high toxicity, there is concern for the potential of sodium monofluoroacetate to contaminate ground water and to persist in the environment. In addition, sodium monofluoroacetate that leaches into soil from bait can be taken up and accumulated by plants, posing a risk of secondary poisoning to herbivores. However, in biologically active systems, the window for toxicity to sodium monofluoroacetate is relatively narrow. Fluoroacetate was rapidly absorbed by grass with peak levels being achieved within 3 days. However, it was just as rapidly degraded or otherwise eliminated from the plant. Absorption and elimination of fluoroacetate by broadleaf plants was somewhat slower; plant levels of fluoroacetate were maximal after 10 days, and elimination was complete by 24 days. The half-life of fluoroacetate in
biologically active water has been estimated at 1 day or less to as long as 6 days, depending on temperature and specific conditions. Fluoroacetate can undergo microbial metabolism in water and soil to glycolate or fluorocitrate. Glycolate is relatively nontoxic (oral LD$_{50}$ in rats is about 2g kg$^{-1}$), whereas fluorocitrate is thought to mediate the toxicity to sodium monofluoroacetate in mammals. In comparison to fluoroacetate, fluorocitrate has a comparable half-life in aquatic systems and a lower oral toxicity. Fluoroacetate in uneaten bait is degraded through microbial action.

Sodium monofluoroacetate is readily absorbed if ingested or inhaled. It can also be absorbed through broken skin, but it is not absorbed through intact skin. Clearance of fluoroacetate varies between species. Studies in rats indicate that fluoroacetate is retained in tissues for several days. The half-life of sodium monofluoroacetate in sheep and goats, respectively, is 10.8 and 5.4 hours, whereas its half-life is less than 2 hours in mice and 1.1 hours in rabbits. The concentrations of fluoroacetate in tissues are only 25-50% of those in plasma, and fluoroacetate appears to be cleared somewhat faster from tissue than from plasma. In studies using sodium [2-14C]fluoroacetate, distribution of the isotope was accompanied, at least in liver and kidney, by accumulation of fluorocitrate.

The primary mechanism of toxicity to sodium monofluoroacetate is inhibition of the Krebs cycle and depletion of energy stores. In mammalian cells, fluoroacetate is converted to fluoroacetyl-CoA and then to fluorocitrate. Fluorocitrate, in turn, can inhibit aconitase, preventing the conversion of citrate to isocitrate. It can also inhibit the translocation of citrate across the mitochondrial membrane. Although only about 3% of a dose of sodium monofluoroacetate appears to be converted to fluorocitrate, these actions account for the depletion of energy stores – especially in heart, liver, kidney and brain – as well as the accumulation of citrate associated with sodium monofluoroacetate poisoning. Fluorocitrate mimics sodium monofluoroacetate in precipitating hypocalcemia as well as toxicity within the central nervous and cardiovascular systems. Although fluoroacetate is metabolized to products other than fluorocitrate, there is little evidence that other metabolites contribute to sodium monofluoroacetate toxicity. Similarly, fluoroacetate can undergo defluorination in the liver, but its toxicity is independent of its fluoride content or the concentrations of free fluoride obtained.

Symptoms often present within 30-180 minutes after the ingestion of sodium monofluoroacetate. The delay is attributed to the time required for fluoroacetate to be converted to fluorocitrate. Once symptoms begin, they are severe and widespread, presenting as respiratory, neurologic, gastrointestinal, cardiovascular and electrolyte disturbances. Manifestations of toxicity in the central nervous system and cardiovascular system, however, may be most apparent. The general response to sodium monofluoroacetate poisoning includes nausea, vomiting and abdominal pain initially, followed by respiratory distress and then signs of central toxicity. Toxicity within the central nervous system is reflected in agitation, apprehension, loss of consciousness, seizures, coma and respiratory failure. Muscle spasms and stupor are also common, and animals that die of monofluoroacetate poisoning show a characteristic hyperextension of the extremities. Cardiovascular symptoms commonly consist of hypotension and sinus tachycardia. The hypotension is associated with decreased peripheral vascular resistance, which is unresponsive to inotropic therapy and volume expansion,
suggesting a direct toxic effect of fluoroacetate on the vasculature. Tachycardia may progress to dysrhythmia marked by nonspecific T-wave and ST-T segment irregularities, then to supraventricular or ventricular tachycardia and, finally, to ventricular fibrillation and sudden cardiac arrest. Metabolic acidosis, hypocalcemia and hypokalemia are common, and acute renal failure with frank uremia can occur. Hypotension, increased plasma creatinine and metabolic acidosis were the most predictive indicators of poor prognosis and mortality in sodium monofluoroacetate poisoning.

There is no known antidote for sodium monofluoroacetate poisoning, but some therapeutic steps have been advocated on the basis of studies in experimental animals. In general, treatment is nonspecific and supportive. Repeated gastric lavage and catharsis seem empirically useful because of enterohepatic recycling of fluoroacetate, but there is no evidence of their effectiveness. Evidence to support the use of activated charcoal as an initial step to remove unabsorbed fluoroacetate is also lacking. Attempts to identify a substrate that would compete with, or by-pass, the inhibition of citrate metabolism caused by fluoroacetate indicated that glycerol monoacetate was the most beneficial in mice, rats, rabbits, dogs and monkeys. Glycerol monoacetate was also less acutely toxic than was either glycerol diacetate or glycerol triacetate. Ethanol, alone or in combination with glycerol monoacetate, was effective against fluoroacetate poisoning in mice and rats. But, the usefulness of ethanol as an antidote to fluoroacetate poisoning in humans is questionable, since it had no beneficial effect in monkeys. A combination of calcium gluconate and sodium succinate decreased mortality to sodium monofluoroacetate in mice, although neither was effective alone. Hypocalcemia contributes to the neural and cardiovascular effects caused by fluoroacetate, and administration of calcium chloride to sodium monofluoroacetate-poisoned cats prolonged survival. In contrast, calcium chloride augmented toxicity to sodium monofluoroacetate in monkeys. Sodium acetate, digoxin, sodium chloride and potassium chloride also enhanced sodium monofluoroacetate toxicity, presumably by exacerbating existing hypernatremia, hyperkalemia or metabolic acidosis. General recommendations for the management of a sodium monofluoroacetate-poisoned patient following these observations consist of intramuscular administration of glycerol monoacetate at hourly intervals, continued monitoring of cardiac function, control of seizures with an anticonvulsant such as diazepam or pentobarbital, and avoidance of cardiac glycosides, calcium, potassium, sodium, bicarbonate and excess acetate. It is important to note that these recommendations have not been evaluated in controlled clinical settings.

2.3. Fluoroacetamide

Fluoroacetamide (compound 1081) is a fluoroacetate derivative that is slightly less toxic and somewhat slower in onset than is sodium monofluoroacetate. Its intraperitoneal LD$_{50}$ in mice is 85 mg kg$^{-1}$ compared to 18 mg kg$^{-1}$ for fluoroacetate. The mechanism of action of fluoroacetamide appears to be identical to that of sodium monofluoroacetate. That premise is based on the observations that fluoroacetamide undergoes deamination to fluoroacetate in vivo and that whole body citrate levels increase subsequent to fluoroacetamide administration. Not surprisingly, the symptoms of fluoroacetamide poisoning mimic those of fluoroacetate poisoning. Thus, interventions appropriate for
the management of the sodium fluoroacetate-poisoned patient apply equally to the management of fluoroacetamide poisoning. Regulations for the use of fluoroacetamide parallel those governing the use of sodium monofluoroacetate.

2.3. 1,3-Difluoro-2-propanol

1,3-Difluoro-2-propanol (DFP) is the major (70%) active component of the pesticide gliflor; the remainder is 1-chloro-3-fluoro-2-propanol. Gliflor is used widely as a rodenticide in some countries and is being evaluated in others as a potential replacement for sodium monofluoroacetate. The oral LD₅₀ for gliflor in rats is about 46 mg kg⁻¹. Although 1,3-difluoro-2-propanol is not strictly a derivative of fluoroacetate, the signs of its toxicity and its apparent mechanism of action are similar to those caused by sodium monofluoroacetate.

1,3-Difluoro-2-propanol can undergo conversion to fluorocitrate in vivo and in vitro through a series of reactions initiated by an NAD⁺-dependent alcohol dehydrogenase. The resulting product, 1,3-difluoroacetone, undergoes a cytochrome P450-mediated defluorination and an acetyl-CoA-mediated decarboxylation to fluoroacetyl CoA. Finally, fluoroacetyl CoA is converted to fluorocitrate. Following administration of 1,3-difluoro-2-propanol to rats, citrate concentrations in the kidney increased coincident with fluoride and fluorocitrate concentrations. Increases in citrate and fluorocitrate concentrations caused by 1,3-difluoro-2-propanol were comparable to, but slower in onset than, the increases caused by sodium monofluoroacetate.

Increases in renal citrate and fluorocitrate concentrations caused by administration of 1,3-difluoro-2-propanol, but not those caused by sodium monofluoroacetate, were markedly attenuated by pretreatment of rats with 4-methylpyrazole. The protective effect of 4-methylpyrazole may reflect an inhibition of malate dehydrogenase. In any event, these observations raise the possibility of 4-methylpyrazole being an effective antidote for 1,3-difluoro-2-propanol poisoning without the introduction of significant additional toxicity. In that light, 1,3-difluoro-2-propanol may be a useful alternative for sodium monofluoroacetate in the control of rodents and other vertebrate pests.

Bibliography

Fluoroacetate Derivatives

Booth LH, Ogilvie SC, Wright GR, Eason CT 1999 Degradation of sodium monofluoroacetate (1080) and fluoroacetate in water. Bull Environ Contam Toxicol 62:34-39

Egekeze JO, Oehme FW 1979 Inorganic and organic fluoride concentrations in tissues after the oral administration of sodium monofluoroacetate (Compound 1080) to rats. Toxicology 15:43-53

Tkach NZ 1969 Toxicology of glibtor to rats after single oral administration. Tr Inst Kraev Patol Min Zdravookhr Kaz SSR 16:146-149

Tkach NZ, Milovanova VI, Knyshev VS 1971 Change in the morphological composition of the peripheral blood during glibtor poisoning. Tr Nauchno-Issled Inst Kraev Patol Alma-Ata 22:12-16

Wong DH, Kirkpatrick WE, Kinmare JE, King DR 1991 Defluorination of sodium monofluoroacetate (1080) by microorganisms isolated from Western Australian soils. Soil Biol Biochem 24:9-14

Thiourea Rodenticides

Barton CC, Bucci TJ, Lomax LG, Warbritton AG, Mehdendale HM 2000 Stimulated pulmonary cell hyperplasia underlies resistance to alpha-naphthylthiourea. Toxicology 143:167-181

Dieke SH 1947 Pigmentation and hair growth in black rats, as modified by the chronic administration of thiourea, phenyl thiourea and alpha-naphthylthiourea. Endocrinology 40:123-136

Esposti MD, Ngo A, Myers MA 1996 Inhibition of mitochondrial complex I may account for IDDM induced by intoxication with the rodenticide vacor. Diabetes 45:1531-1534

Gunnarson R 1975 Inhibition of insulin biosynthesis by alloxan, streptozotocin, and N-nitrosomethylurea. Mol Pharmacol 11:759-765

Meyrick B, Miller J, Reid L 1972 Pulmonary oedema induced by ANTU, or by high or low oxygen concentrations in rat—an electron microscopic study. Br J Exp Pathol 53:347-358

Miller LV, Stokes JD, Silpipat C 1978 Diabetes mellitus and autonomic dysfunction after vacor rodenticide ingestion. Diabetes Care 1:73-76

Minty BD, Scudder CM, Grantham CJ, Jones JG, Bakhle YS 1987 Sequential changes in lung metabolism, permeability, and edema after ANTU. J Appl Physiol 62:491-496

Peardon DL 1974 RH-787, a new selective rodenticide. Pest Control 42:14,16,18,27

Richter CP 1945 The development and use of alpha-naphthyl thiourea (ANTU) as a rat poison. JAMA 129:927-931

Richter CP 1952 Physiology and cytology of pulmonary edema and pleural effusion produced in rats by ANTU. J Thor Surg 23:66-91

Roth RA, Ball TM 1986 Technical grade but not recrystallized alpha-naphthylthiourea potentiates superoxide release by rat neutrophils stimulated in vitro by phorbol myristate acetate. Fundam Appl Toxicol 7:324-328

Smith BR, Brian WR 1991 The role of metabolism in chemical-induced pulmonary toxicity. Toxicol Pathol 19:470-481

Bromethalin

Cherry LD, Gunnoe MD, van Lier RBL 1982 The metabolism of bromethalin and its effects on oxidative phosphorylation and cerebrospinal fluid pressure. Toxicologist 2:108

Dorman DC, Parker AJ, Buck WB 1991 Electroencephalographic changes associated with bromethalin toxicity in the dog. Vet Hum Toxicol 33:9-11

Dorman DC, Zachary JF, Buck WB 1992 Neuropathologic findings of bromethalin toxicosis in the cat. Vet Pathol 29:139-144

Dreikorn BA, O'Doherty GOP, Clinton AJ, Krammer KE 1979 EL-614, a novel acute rodenticide. Proc Brit Crop Protect Conf 491-498

©Encyclopedia of Life Support Systems (EOLSS)
Grolleau G 1988 Susceptibility of three synanthropic rodent species to bromethalin under laboratory conditions. Bull OEPP (Organ Eur Mediterr Prot Plant) 18:469-474

Vitamin D-based Rodenticides

Byers RE, Carbaugh DH 1989 Vole population shifts related to rodenticide usage. Hortscience 24:783-785

DeLuca HF 1988 The vitamin D story: a collaborative effort of basic science and clinical medicine. FASEB J 2:224-236

DeLuca HF 1992 Remembrance: discovery of the vitamin D endocrine system. Endocrinology 130:1763

Jolly SE, Eason CT, Frampton C 1993 Serum calcium levels in response to cholecalciferol and calcium carbonate in the Australian brushtail possum. Pest Biochem Physiol 47:159-164

Livezey KL, Hooser SB, Dorman DC, Buck WB 1991 Hypercalcemia induced by vitamin D3 toxicosis in two dogs. Canine Pract 16:26-32

Lund M 1974 Calciferol as a rodenticide. Intern Pest Control 16:10-11

Rennison BD 1974 Field trials of calciferol against warfarin resistant infestations of the Norway rat
(Rattus norvegicus Berk.). J Hyg 73:361-367
Talcott PA, Mather GG, Kowitz EH 1991 Accidental ingestion of a cholecalciferol-containing rodent bait in a dog. Vet Hum Toxicol 33:252-256
Witmer GW, Matscheke GH, Campbell DL 1995 Field trials of pocket gopher control with cholecalciferol. Crop Prot 14:307-309

Norbormide
Roszkowski AP 1965 The pharmacological properties of norbormide, a selective rat toxicant. J Pharmacol Exp Ther 149:288-299
Roszkowski AP, Poos GI, Mohrbacher RJ 1964 Selective Rat Toxicant. Science 144:412-413
Tsyrkunov LP 1989 (Skin lesions caused by exposure to a pesticide norbormide. Gig Tr Prof Zabol 46-47

Scilliroside
Dybing F, Dybing O, Stormorken H 1952 The toxicity of red squill and scilliroside to rats and mice. Acta Pharmacol et Toxicol 8:391-399

Grollman A, Suki W, Ghavamian M 1962 The direct action of squill on the kidney as compared to certain other digitalis bodies. Arch Int Pharmacodyn 140:55-60

Lam YM 1993 Toxicity and palatability of scilliroside to Rattus argentiventer. Mardi Res J 21:113-120

Thurston D, Taylor K 1984 Gee's linctus. Pharm J 233:63

Winton FR 1927 A contrast between the actions of red and white squills. J Pharm Exp Therap 31:137-144

Alpha-chlorohydrin

Dixit VP, Agrawal M 1980 Inhibition of spermatogenesis in house rat (Rattus rattus Rufescens) following the administration of alpha-chlorohydrin. Andrologia 12:513-520

Dixit VP, Lohiya NK, Jain HC 1974 Effects of alpha-chlorohydrin and gonadectomy on the adenohypophysial cells of male rats and gerbils. J Reprod Fert 38:185-188

Ford WC, Harrison A 1980 Effect of alpha-chlorohydrin on glucose metabolism by spermatozoa from the cauda epididymidis of the rhesus monkey (Macaca mulatta). J Reprod Fertil 60:59-64
Ford WC, Harrison A 1986 The concerted effect of alpha-chlorohydrin and glucose on the ATP concentration in spermatozoa is associated with the accumulation of glycolytic intermediates. J Reprod Fertil 77:537-545
Ford WCL, Waites GMH 1982 Activities of various 6-chloro-6-deoxysugars and (S)-chlorohydrin in producing spermatoceles in rats and paralysis in mice and in inhibiting glucose metabolism in bull spermatozoa in vitro. J Reprod Fertil 65:177-183
Frei H, Wurgler FE 1997 The vicinal chloroalcohols 1,3-dichloro-2-propanol (DC2P), 3-chloro-1,2-propanediol (3CPD) and 2-chloro-1,3-propanediol (2CPD) are not genotoxic in vivo in the wing spot test of Drosophila melanogaster. Mutat Res 394:59-68
Hoffer AP, Hamilton DW 1970 Effects of U-5897 on fine structure of the rat epididymis. Anat Rec 166:319
Jones AR 1978 The antifertility actions of alpha-chlorohydrin in the male. Life Sci 23:1625-1645
Jones AR, Ford SA 1984 The action of (S)-alpha-chlorohydrin and 6-chloro-6-deoxyglucose on the metabolism of guinea pig spermatozoa. Contraception 30:261-269
Jones AR, Milton DH, Murcott C 1978 The oxidative metabolism of alpha-chlorohydrin in the male rat and the formation of spermatoceles. Xenobiotica 8:573-582
Jones AR, Murcott C 1976 The oxidative metabolism of alpha-chlorohydrin and the chemical induction of spermatocoeles. Experientia 32:1135-1136

Samojlik E, Chang MC 19701 Antifertility activity of 3-chloro-1,2-propanediol (U-5897) on male rats. Biol Reprod 2:299-304

Setty BB, Kar AB, Roy SK, Chowdhury SR 1970 Studies with sub-toxic doses of alpha-chlorohydrin in the male monkey (Macaca mulatta). Contraception 1:279

Stevenson D, Jones AR 1985 Production of (S)-3-chlorolactaldehyde from (S)-alpha-chlorohydrin by boar spermatozoa and the inhibition of glyceraldehyde 3-phosphate dehydrogenase in vitro. J Reprod Fertil 74:157-165

Thallium

Aoyama H, Yoshida M, Yamamura Y 1988 Induction of lipid peroxidation in tissues of thallous malonate-treated hamster. Toxicology 53:11-18

Kennedy P, Cavanagh JB 1976 Spinal changes in the neuropathy of thallium poisoning. A case with
neuropathological studies. J Neurol Sci 29:295-301
Acute thallium poisoning: an evaluation of different forms of treatment. J Toxicol Clin Toxicol 19:1015-
1021
Med 71:119-123
Pedersen RS, Olesen AS, Freund LG, Solgaard P, Larsen E 1978 Thallium intoxication treated with long-
Schafer EW 1972 The acute oral toxicity of 369 pesticidal, pharmaceutical and other chemicals to wild
Shaw PA 1933 Toxicity and deposition of thallium in certain game birds. J Pharm Exp Therap. 48:478-
487
Spencer PS, Peterson ER, Madrid R, Raine CS 1973 Effects of thallium salts on neuronal mitochondria in
organotypic cord-ganglia-muscle combination cultures. J Cell Biol 58:79-95
van Kesteren RG, Rauws AG, de Groot G, van Heijst ANP 1980 Thallium intoxication, an evaluation of
therapy. Intensivmed 17:293-297
concentration and its activity in murine tissue after thallium administration. Bull Environ Contam Toxicol
59:268-273
Yellow Phosphorus
Atkinson HV 1921 The treatment of acute phosphorus poisoning. J Lab Clin Med 7:148
Caley JP, Kellock IA 1955 Acute yellow phosphorus poisoning with recovery. Lancet 268:539-541
Dathe RA, Nathan DA 1945 Electrocardiographic changes resulting from phosphorus poisoning. Am
Heart J 31:98-102
Diaz-Rivera RS, Collazo PJ, Pons ER, Torregrosa MV 1950 Acute phosphorus poisoning in man: a study
of 56 cases. Medicine 29:269-298
Duerksen-Hughes P, Ingerman L, Ruoff W. Toxicological profile for white phosphorus and white
phosphorus smoke. 1994. Atlanta, Georgia, USA, U.S. Department of Health and Human Services, Public
Health Service, Agency for Toxic Substances and Disease Registry.
Ehrentheil OF 1957 Acute phosphorus poisoning: a case with severe granulocytopenia and
hypoprophosphobinemia. Bull Tufts N Eng Med Center 3:201-206
Fernandez OU, Canizares LL 1995 Acute hepatotoxicity from ingestion of yellow phosphorus-containing
fireworks. J Clin Gastroenterol 21:139-142
Greenberger NJ, Robinson WL, Isselbacher KJ 1964 Toxic hepatitis after the ingestion of phosphorus
with subsequent recovery. Gastroenterology 47:179-183
LaDue JS, Schenken JR, Kuker LH 1944 Phosphorus poisoning: a report of sixteen cases with repeated
Marin GA, Montoya CA, Sierra JL, Senior JR 1971 Evaluation of corticosteroid and exchange-
Matsumoto S, Kohri Y, Tanaka K, Tsueiha G 1972 A case of acute phosphorus poisoning with various
electrocardiographic changes. Jap Cir J 36:963-970
McCaron MM, Gaddis GP, Trotter AT 1981 Acute yellow phosphorus poisoning from pesticide pastes.
Clin Toxicol 18:693-711

Wellsa GH 1926 Case of chronic phosphorus poisoning. M Clin N Am 10:95

Zinc Phosphide

Hsu CH, Quistad GB, Casida JE 1998 Phosphine-induced oxidative stress in Hepa 1C1C7 cells. Toxicol Sci 46:204-210

Cytogenetic and germ cell effects of phosphine inhalation by rodents: II. Subacute exposures to rats and mice. Environ Mol Mutagen 24:301-306

Newton PE, Hilaski RJ, Banas DA, Wilson NH, Busey WM, Shaheen DG 1999 A 2-year inhalation study of phosphine in rats [In Process Citation]. Inhal Toxicol 11:693-708

Pal BB, Bhunya SP 1995 Mutagenicity testing of a rodenticide, zinc tox (zinc phosphide) in a mouse in vivo system. In Vivo 9:81-83

Waritz RS, Brown RM 1975 Acute and subacute inhalation toxicities of phosphine, phenylphosphine and triphenylphosphine. Am Ind Hyg Assoc J 36:452-458

Strychnine

Dieke SH, Richter CP 1946 Comparative assays of rodenticides on wild Norway rats. Public Health Rept U S 61:672-679

Garlough FE 1941 Poisons and their application in the control of rats and mice. Pests 9:15-19

Hatcher RA, Eggleston C 1918 The fate of strychnine in the body. J Pharm Exp Therap 10:281-319

Howard WE, Palmateer SD, Nachman M 1968 Aversion to strychnine sulfate by Norway rats, roof rats, and pocket gophers. Toxicol Appl Pharmacol 12:229-241
Tucker RK, Haegele MA 1971 Comparative acute oral toxicity of pesticides to six species of birds. Toxicol Appl Pharmacol 20:57-65

Anticoagulants

Holms RW, Love J1952 Suicide attempt with warfarin, abishydroxycoumarin-like rodenticide. JAMA 148:935-937

Rowe FP, Brasfield A, Swinney T 1985 Pen and field trials of a new anticoagulant rodenticide flocoumafen against the house mouse (Mus musculus L.). J Hyg (Cab) 95:623-627

Yu CC, Atallah YH, Whitacre DM 1982 Metabolism and disposition of diphacinone in rats and mice. Drug Metab Dispos 10:645-648

Biographical Sketches

Robert E. Kramer received a Doctor of Philosophy Degree from The University of West Virginia (Department of Physiology) in 1976. His dissertation research focused on endocrine regulation of hepatic
and adrenocortical mixed function oxidases. His postdoctoral training was related to intracellular signaling within the adrenal cortex with emphasis on the regulation and expression of steroidogenic cytochrome P450 enzymes. His research focuses on the mechanisms of action of steroidogenic agonists and the modulation of those actions by environmental factors. A topic of current interest is the effects of organophosphorus pesticides on cytochrome P450 isozymes in the liver and in extrahepatic tissues. Presently, Dr. Kramer is a Professor of Pharmacology and Toxicology at The University of Mississippi Medical Center, Jackson, Mississippi.

Rodney C. Baker received a Master of Science Degree (nutrition) from Utah State University in 1970. His thesis addressed the interaction between diet protein quantity or quality and the metabolism of organochlorine pesticides. He received a Doctor of Philosophy Degree in 1974 from North Carolina State University (physiology/toxicology). His research project was directed toward elucidating the mechanism of piperonyl butoxide action. Dr. Baker’s postdoctoral training was in the area of lipid biochemistry. His research activities have centered on the interaction of various classes of drugs and xenobiotics on lipid metabolism and disruption of phospholipid dependent intracellular signal transduction processes. Dr. Baker is currently a Professor of Pharmacology and Toxicology at The University of Mississippi Medical Center, Jackson, Mississippi.