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Summary 
 
We have presented a brief initial discussion of the concept of the environmental 
modeling system and laid particular emphasis on the relation between the data which is 
used to run such models and the mathematical model itself. We have also discussed the 
relations between the data and the output of the models on the one hand, and the 
relations of the data with the sensitivity of the environmental model on the other hand. 
We have discussed specifically the mesoscale air quality models and the different 
modules by making a distinction between peripheral modules (DATA) and the 
mathematical model itself. We have presented a specific example of the application of a 
mesoscale air quality model (OPANA) to a domain (Madrid, Spain) and the impact of 
using remote sensing data or field experiment data for parameterising the canopy 
resistance in deposition modeling. Finally, we have discussed the foreseen future 
evolution of air quality modeling (and particularly the mesoscale air quality modeling) 
by using tools such as GIS or satellite data and statistical packages together with the 
future more powerful parallel computer platforms. 
 
1. Introduction: Mathematical Modeling 
 
Substantial research has been devoted to mathematical modeling of environmental 
systems. Most of the work has been published in a wide range of journals and 
conference proceedings, each venue usually being specific to a particular, narrow range 
of disciplines or problems. Models are usually tools which provide integrated results of 
complex problems. In the case of environmental matters, the models essentially 
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contribute to the understanding of the complex relations between the different areas in 
ecological systems such as atmosphere, biosphere, etc. Models, and particularly 
mathematical models over computer platforms, are useful in simulating complex 
relations, and are providing answers to many different types of problems. Models are 
particularly useful when interdisciplinary subjects must be managed to understand a 
fixed problem or matter. Environmental processes are usually excellent examples of 
where an application of models is suitable. Environmental processes are also excellent 
examples of interdisciplinary applications which usually lead to solutions that are only 
understandable when all objects or modules are interconnected in the proper way, trying 
to simulate real processes in nature. These processes are characterized, in general terms, 
by being highly non-linear, so that modeling simulations are probably the only method 
to understand the complexity of the processes and, furthermore, the answers.  
 
Mathematical modeling (as a set of differential equations) is, as a consequence, in many 
cases the essential tool for environmental engineering to simulate processes in the 
atmosphere, water or any ecosystem. In this contribution, we will focus particularly on 
atmospheric models. (For information on Measurement Tools for Atmospheric Systems, 
see Measurement Tools: Atmospheric Systems). However, many of the concepts can be 
easily transferred to other areas of environmental studies, such as water, waste, energy, 
etc. The model represents a tool to reproduce reality by simulating processes on a 
computer platform. In broad terms there are two reasons for constructing a 
mathematical model. From a pragmatic point of view, decisions regarding restoration 
and protection of the environment must be made. From a more philosophical 
perspective, a mathematical model may be the only means of representing our 
understanding of the complex behavior of an environmental system; such a model may 
be the most appropriate vehicle for interpreting observations of this system's past 
behavior. 
 
In the context of classical decision analysis, however, a decision may take one of two 
forms: of either an action - figuratively, the pulling of a lever of policy in order to drive 
the system in a desired direction; or, the collection of further observations - for 
identification of those parts of the system that are not well understood, yet crucial to the 
success of knowing which lever of policy might subsequently best be pulled. We know 
that governments may delay taking (expensive) action while (much cheaper) research is 
undertaken in order to reduce uncertainty. Such research is often equated largely with 
field work and experimentation. Yet, it has not been the tradition for these processes of 
monitoring the environment to be guided by use of a model. 
 
In a more refined sense, therefore, there are three objectives of modeling: 
 
1. Prediction of future behavior under various courses of action, i.e.,, in the service of 

informing a decision. 
2. Identification of those constituent mechanisms of behavior that are crucial to the 

generation of a given pattern of future behavior but insufficiently secure in their 
theoretical or empirical basis, i.e., in designing the collection of further 
observations. 

3. Reconciliation of the observations of past behavior with the set of concepts 
embodied in the model, i.e., in the modification of theory and in explaining why a 
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particular input disturbance of the system gave rise to a particular output response. 
 
Developments in hardware and software of digital computing, as the platform on which 
our models are made, cannot be separated from the way in which these models are 
conceived. Precisely which of these conceptual frameworks, and therefore 
computational representations, would be best suited to detecting and predicting 
environmental change is an entirely open question. We have barely begun to define the 
problem, let alone establish the means of its solution. Most of the contributions to 
environmental modeling, in general, presume the use of classical differential calculus as 
their conceptual framework, for which purposes we shall need to be concerned with the 
reliability of a numerical solution scheme. Yet there is equally a need to be aware of the 
possibility of better, alternative conceptual frameworks. 
 
For example, it is obvious that the movement of a substance (pollutant) through a 
medium (air, water, solid) and its fate in that environment are of fundamental 
importance. In the purely formal terms of solving numerically the differential equations 
for characterizing these features, the differential operator may be split into the three 
components: advection, dispersion, and biochemical reaction. In spite of much progress 
in the use of operator splitting schemes, a proper simulation of the advective component 
remains problematic. There will always be benefits to be gained from improved 
schemes of numerical solution. For instance, Somlyody and Varis (1992) have argued 
that better schemes of operator splitting are needed for improved identification of the 
non-hydraulic terms in models of water pollution, i.e., those elements associated with 
the biochemical operator. In other words, if the hydraulic basis upon which our 
biochemical assumptions are founded is made more secure, we ought to be more 
confident of correctly identifying from the field data aspects of behavior attributable to 
these assumptions. This presumes, of course, that the concepts underlying the theory of 
advection and dispersion, to which the numerical operators more faithfully approximate, 
are themselves correct. Yet, in spite of the longevity of their study, the debate over how 
one perceives of what is meant by advection and dispersion has not diminished. 
 
On the other hand, given the receding image of the fine-grained "truth" that motivates 
the enquiry, and given the grid (of either discrete points or volumes) that will result 
from any numerical scheme of solution, there will always be phenomena operating at 
finer scales of resolution than that of the model's numerical grid, and they must 
therefore be excluded from the model. These phenomena lie beyond the resolving 
power of the model; they may influence the behavior of the system as reflected in the 
more macroscopic terms of the model (i.e., in the values of its state variables); such 
microscopic influences must be described by expressions that are functions of these 
relatively macroscopic state variables; and, the formulation (or parameterization) of 
these expressions is problematic. In short, how are we to quantify the effects of that 
which must be excluded from the model in terms of that which can be included? This 
problem - of sub-grid scale variability and its relevance to modeling change in 
environmental systems - is already familiar to us from the discussion in the opening 
session. It is most often conceived in respect of characterizing spatial variability, and, 
for this reason, it is almost always intertwined with the technicalities of a numerical 
solution. But this spatial dimension has its counterpart in the differentiation among - or 
conversely, agglomeration of - chemical and biological species (as best illustrated in the 
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now almost forgotten works on models utilizing the concept of trophic length). The 
problem of sub-grid scale variability stands, therefore, above the mere technicalities of 
numerical solution. At this time in the development of the model, concern must 
necessarily shift from construction to evaluation. To be concise, in the following, let us 
assume, without great loss of generality, that the model of the environmental system can 
be defined by the following representation of the state variable dynamics: 
 

( ) ( , , ; ) ( ) (1)x t f x u t tα ϕ= +  
 
with observations of the state of the system sampled discretely in time as: 
 

( ) ( , ; ) ( ) (2)k k ky t h x t tα μ= +  
 
Here x is the vector of state variables (such as pollutant concentrations in a defined 
volume of water), u is a vector of measured input disturbances (precipitation, solar 
radiation, effluent characteristics, and so on), y is a vector of output responses, α is a 
vector of model parameters (such as, for example, dispersion coefficients, growth-rate 
constants), ϕ is a vector of disturbances of the state variable dynamics that are not 
observable (the system noise), μ is a vector of (output) observation errors (the 
measurement noise), f and h are vectors of nonlinear functions, t is continuous time, tk is 
the kth discrete instant in time, and the dot notation in x  denotes differentiation with 
respect to time t. 
 
Spatial variability of the state of the system can be assumed to be accounted for by, for 
example, the use of several state variables for the same quantity at several discretely 
defined locations (or within several discretely defined volumes). Typically, the outputs 
(y) are simply the error-corrupted values of the states, although in element-cycle models 
it is common to find that a single output variable, such as the observed concentration of 
total phosphorous, may refer to the aggregate sum of this element distributed in the 
system among several chemical and biological species, each denoted as a separate state 
variable. 
 
We need now to prepare our discussion of the procedural steps of system identification 
with some observations on the objectives of analysis and the possible reorientation of 
some parts of the procedure for the purpose of detecting change. 
 
MacFarlane (1990) has presented a three-element characterization of knowledge. 
According to the American philosopher Lewis, these three elements are (as reported by 
MacFarlane): 
 
– The given data 
– A set of concepts 
– Acts which interpret the data in terms of concepts. 
 
It is readily apparent that the problem of system identification is covered exactly by the 
third of these three elements. For, in the formal terms of the model of equation (1) 
above, we have the following counterparts: 
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• The observed input-output data (u,y) constitute the external description of the 
system's behavior and are the given data. 

• The states and the parameters of the model (x,α) constitute the internal description 
of the system's behavior and are therefore associated with a formal realization of the 
set of concepts (through (f,h)), and  

• Identification of the model is the 'act which interprets the data in terms of the set of 
concepts' (or alternatively, brings about reconciliation of the model with the data). 

 
It is equally obvious that the distinction between the internal (x,α) and external (u,y) 
descriptions of the system's behavior is crucial to an appreciation of what will be 
possible as an outcome of implementing the subsequent procedure of analysis. The 
power of the classical experiments of laboratory science lay presumably in promoting 
the possibility of 'acts which interpret the data in terms of concepts' by reducing the set 
of concepts under scrutiny to as small a set as possible and by maximizing the scope for 
acquiring a large volume of the necessary data. The possibility of progress in the 
identification of a model should be enhanced when the order of (u,y) is very much 
greater than the order of (x,α), or O(x,y)>>O(x,α), for brevity. This can rarely be the 
case in the analysis of environmental systems; indeed, quite the opposite is the norm, 
i.e., O(u,y) << O(x,α). 
 
Moreover, the art of the possible in system identification will be heavily circumscribed 
by what we may broadly label the balance of uncertainties between the set of concepts 
included in the model and the given data. On both sides of the dichotomy there are 
continua, from the almost certain to the highly uncertain. In contrast to what we would 
hope for, the inputs and outputs may well not have been observed with barely any error 
and with a high sampling frequency in space and time. The given data may frequently 
amount to little more than a qualitative expert opinion based on casual observation in 
the field. A similar spectrum of 'solidity vs. fluidity' is apparent in the constituent 
hypothesis by which the model is composed and - perhaps more importantly - those of 
which it is not composed. It is well known that some of the model's constituent 
hypotheses, and, therefore, its constituent parameters, are believed a priori to be more 
secure, or less uncertain, than others (as in the foregoing discussion of operator splitting 
schemes). This too can be accounted for. 
 
What is achievable, then, in reconciling the set of concepts (the model) with the given 
data will be geared to the relative positions of the identification problem along the two 
continua, of uncertainty in (x,α), and uncertainty in (u,y). Thus, for example, to identify 
which of the model's constituent mechanisms are key, and which redundant, to a 
matching of observed behavior is a less sophisticated question to answer than 
attempting to establish which of these mechanisms are 'correct' and which 'incorrect'. To 
ask whether each constituent hypothesis is correctly expressed in the model is rather 
more sophisticated; indeed, to search for a single, uniquely best set of values for the 
parameters of those expressions will be even more demanding of the confidence that 
must attach to the set of concepts and given data. In a Bayesian spirit, and with a view 
to making decisions, the process of system identification is designed to bring about 
changes in the posterior probability of the model's parameters relative to the prior 
distributions (assumed before the model has been confronted with a given set of data). 
Ideally, the posterior distributions should reflect less uncertainty in the model than 
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before identification took place. In practice, they will also tend to reflect the inevitable 
distortions of an inadequate model structure and the ambiguities of an insufficiently 
incisive and extensive set of field data. It has been conventional to use (and to seek) 
merely a uniquely optimal set of model parameters for subsequent prediction. 
Contemporary studies in identification are more pragmatic, searching somewhat less 
strenuously for either several sets of relatively good or simply just acceptable candidate 
parameterizations of the model. 
 
See: Nonlinear systems, mathematical modeling, decision analysis, state variable 
dynamics, reliability, operator splitting, parameterization, noise, given data, set of 
concepts, "the balance of uncertainties". 
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