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Summary 
 
Numerical flood simulation has matured significantly over the last decades and has 
come to the point where a quite realistic picture of potential flood threats can be 
produced at reasonable cost. The quality of a flood simulation model fully depends on 
its descriptive capabilities of the physical system in terms of topographic and roughness 
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data, the representativeness of the equations, and the numerical method applied. This 
contribution reviews and explains the current practice and state of the art of numerical 
flood simulation models. In particular, the most important and widely used depth 
averaged model is reviewed and discussed along with its numerical treatment. 
Proceeding with the two-dimensional flow description and its numerical discretization 
principles, numerical discretization of depth averaged two-dimensional shallow water 
equations are presented with special attention given to the correct and robust modeling 
within the finite volume framework. Some popular finite volume models for solving the 
depth averaged two-dimensional shallow water equations are described, with special 
attention to the modeling of shock (bore) waves, the treat of natural topographies, and 
the appearance of wet/dry fronts. 
 
1. Introduction  
 
The risk and impact of floods in rural as well as in urban areas has been increased in the 
last few decades as population and urbanization processes rapidly increase and 
subsequently more and more people and properties are being concentrated in flood-
prone coastal zones and river flood-plains. In addition, there is an increasing awareness 
about climate changes and extreme weather conditions that can lead to the emergence of 
natural disasters such as, flash floods and failures of flood defense structures, including 
dams, weirs and flood dykes. Moreover, floods in urban areas can be much more 
devastating than any other areas and they can pose a significant threat to human life. 
Worldwide, coastal, riverine and flash floods are responsible for more than 50% of the 
fatalities and for about 30% of the economic losses caused by all natural disasters. The 
state of the art of numerical flood simulation has progressed significantly over the last 
decades and has come to the point where a quite realistic picture of potential flood 
threats can be produced at reasonable costs. New data collection techniques have 
emerged which alleviate the traditional problem of lack of data for topographic and 
terrain modeling. In addition, numerical techniques have matured, providing robustness 
and efficiency in model simulation. 
 
Modeling and simulation of flood events are necessary to understand the mechanisms of 
the process and therefore to better protect urban areas and increase public safety; for 
example, they can be important for developing emergency plans. The information 
provided from simulations about potential floods must include such data as (i) time of 
the flood wave arrival at some points in a valley or a city, (ii) extreme water levels in 
the flooded area, (iii) duration and range of flooding and (iv) water depths and velocities 
in the flooded zones. As such, flood inundation and propagation modeling can be 
defined as the art of quantitatively describing the evolution and characteristics of the 
flow that is set up when a large amount of water moves along the earth surface in an 
uncontrolled way (Mandych, 2004). The progress of flood propagation models is linked 
directly to (a) the understanding the flow processes relative to the problem, (b) the 
formulation of appropriate mathematical laws, (c) the development of effective 
numerical techniques to solve them and (d) the validation of the model output against 
benchmark, experimental and real life data. The underlying mathematical models 
describing the flood process are basically variations of models for free surface water 
flow. These models are mainly governed by unsteady non-linear Partial Differential 
Equations (PDE’s) in general three dimensional (3D) domains, with a free surface 
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boundary condition.  
 
An important feature of free surface flows is that they are unbounded in space, the limits 
of the spatial domain being an unknown of the problem to be solved. Problems in which 
the limits of the fluid are unknown and unsteady include among others, dam-break 
induced flows, tidal flow in estuaries and flood propagation in rivers. In these situations 
it is necessary to compute a non-stationary wet/dry front, which is part of the solution 
we are looking for. The full flow field can be described by the Navier-Stokes equations. 
However, qualitative and/or quantitative approximations of the actual solution are given 
by approaches based on simplified equations. This is done in a systematic effort to 
overcome the need, usually, of excessively demanding numerical techniques to resolve 
the Navier-Stokes equations (supplied possibly with appropriate turbulence closure 
models). A widely used approach is that of the 2D depth averaged models. The 2D 
character of the free surface flow is usually enforced by a horizontal length scale which 
is much larger than the vertical one, and by a velocity field quasi-homogeneous over the 
water depth. This small ratio between the vertical and horizontal length scales 
characterizes flood situations as well as many engineering applications, mainly in river 
and coastal engineering. Despite their shortcomings, depth averaged models are 
effectively used in engineering practice in order to model environmental flows in rivers 
and coastal regions, as well as shallow flows in hydraulic structures. Concerning 
topographies of flooded territories and the complexity of city structures, flow 
simulations in 2D in the horizontal plane are indispensable. As such many geophysical 
flows can be modeled by the shallow water (SW) or Saint-Venant (SV) system of 
equations or their variations. Extensions of these equations are useful to model 
sedimentary flows, tsunamis, avalanches, river mouths and junctions, marine flows. The 
choice of methods and algorithms for computing solutions to these equations is very 
wide. Among them the Finite Volume formulation, is nowadays the most applied 
modeling strategy for such computations.  
 
Depending on their objective, flood simulation models may differ in their requirements. 
Criteria for the selection of the appropriate tools are often based on the required speed 
of computation, completion time for a simulation, level of accuracy in the results, data 
requirements, numerical robustness, user-friendliness of the software, and possible 
others, depending of the model. These objectives may be related to flood risk analysis, 
flood forecasting and control and may be based upon a variety of causes, such as, 
storms, dam or dike breaks, hurricanes and geologically induced tsunamis. The 
development of suitable numerical techniques and that of powerful computer equipment 
has enable to produce reliable simulations for practical applications. In the area of 
numerical flood simulation some frequently used tools, that are currently available 
commercially or as freeware and utilize 2D depth averaged models, are the Mike 11 
(1D) and Mike 21 (2D) modeling systems of the Danish Hydraulics Institute, the 
SOBEK modeling system of Delft Hydraulics, the ISIS tool and InfoWorks of Walling-
ford Software, the TUFLOW software of BMT WMB Consultants, the HEC-RAS 
system of the US Army Corps of Engineers, the LISFLOOD-FP flood inundation 
system of the University of Bristol, the TELEMAC2D modeling system of Electricité 
de France (EDF), the BASEMENT software of the Swiss Federal Institute of 
Technology (ETH), the ANUGA Hydrodynamic Modeling of Geosciences Australia, 
and the CARPA modeling system of the Flumen research group. In addition, several 
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research projects and consortiums have been initiated (e.g. the CADAM, IMPACT and 
FLOODsite European research projects and the Floodrisk British consortium ) in order 
to establish cutting edge research to enhance flood risk management practice and to 
deliver tools and techniques to support improvements in flood modeling and simulation. 
 
This presentation is focused on the mathematical and numerical modeling of 2D free 
surface flows under the influence of gravity. It reviews and summarizes some previous 
theoretical, numerical and experimental studies about the simulation of flood 
propagation using depth averaged models. The derivation of the 2D SW equations is 
summarized and discussed, in order to understand the limitation of these equations and 
asses the numerical results obtained from them. In addition, state of the art finite volume 
numerical schemes and discretization techniques implemented in flood flow simulations 
and solve the 2D SW equations are described and discussed in more detail. 
 
2. Mathematical Modeling of Flood Propagation  
 
2.1. Navier-Stokes (NS) and Related Models  
 
Flood propagation over the earth’s surface is a 3D time dependent, incompressible, fluid 
dynamics problem with a free surface. By not considering the erosion and deposition 
effects, which are a subject of a separate branch of study, the flow can be considered as 
a single phase flow. The well known Navier-Stokes (NS) equations (Bardos, 2005), in 
3D, perfectly describe the dynamics of a portion of fluid. However, the main drawback 
to a fully 3D approach is its computational cost, especially in environmental problems, 
where the size of the spatial domain can be very large and there are flow patterns of 
different length scales involved in the flow. The flow is turbulent and of geographical 
size, and the cascade of length and time scales present is huge what impairs any attempt 
to solve the 3D NS equations by any means; only in very simple geometry 
configurations it is possible to solve directly the NS equations using appropriate 
numerical methods such as Direct Numerical Simulations (DNS) (Wagner, 2006). In a 
DNS it is necessary to resolve all the scales of motion appearing in the flow, since they 
interact with each other; in order to do that, the computational mesh size must be 
smaller than the smallest significant scale motion, and the simulation time step must be 
small enough to resolve the highest frequency oscillations appearing in the flow. This 
constitutes a significant reservation for using DNS. 
 
In order to circumvent the problem of turbulence the NS equations can be averaged in 
time in order to obtain the so-called Reynolds-Averaged Navier-Stokes equations 
(RANS) that describe the mean flow. The effects of the turbulent fluctuations on the 
mean flow are taken care of by means of turbulence models, i.e. formulations whereby 
the stress due to turbulence are related to the mean flow variables. Currently there are 
dozens of turbulence models in use, each adapted to a particular fluid dynamics 
situation. The RANS equations are of wide use in industrial fluid mechanics and 
aerodynamics (Chabard and Laurence, 2004) but are still too complex to be applied in 
order to describe flood propagation, mainly due to the resolution that would be needed 
to make such a procedure meaningful. Furthermore, since turbulence models are 
developed to be well suited to specific situations, those currently available may not even 
make sense in a flood propagation scenario.  
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Further to the problem of turbulence, the NS and RANS based models have the added 
difficulty of the air-water interface movement. The free surface moves with the velocity 
of the fluid particles located at the boundary and therefore its position is one of the 
unknowns that must be solved for during a computational procedure. The problem lies 
in that, the equations of motion only apply to the space occupied by the fluid which is 
not known a priori. Several methods have been developed to circumvent these 
difficulties, mostly relying on iterative procedures. A rather general classification 
distinguishes between mesh methods and meshless methods. Meshless methods use a 
Lagrangian formulation in order to compute the movement of fluid particles applying 
Newton’s Second law. The most popular meshless method is the Smoothed Particle 
Hydrodynamics (SPH) method. It has the advantage of being able to treat complicated 
free surface deformations, but it has problems with the correct modeling of boundaries.  
 
Mesh methods can be classified in moving grid methods and fixed grid methods. 
Moving grid methods use a Lagrangian formulation in order to move the grid nodes and 
boundaries with the fluid. The free boundary is computed with a front tracking 
technique. The main disadvantage is the computational cost, since the nodes of the mesh 
move at each time iteration, and thus, the geometric properties of the mesh need to be 
recomputed. Lagrangian methods are mainly used when the movement of the free 
surface is small, because otherwise it is necessary to add or remove some nodes from 
the mesh in order to avoid a large distortion of the elements.  
 
Fixed grid methods are more commonly used. They can use a fully Eulerian formulation 
(interface capturing) or a combined Eulerian-Lagrangian formulation (interface 
tracking). Among the Eulerian methods the Volume of Fluid (VOF) method and Marker 
in Cell (MAC) methods have gained a reputation of accuracy and robustness, but their 
application to flooding problems has not yet been possible due to the extraordinary 
computational power needed for their application. Simulations of propagating and 
breaking waves as well as dam beak flows with these methods have been obtained 
however, these simulations are limited to idealized, two dimensional (in the vertical 
plain) cases with no practical interest or to limited size industrial applications. 
Furthermore, in order to simplify the problem either only laminar flows are considered 
or the diffusive re-dropped from the NS equations thus solving the inviscid (Euler) 
equations. Fully 3D simulations are usually limited to steady or slow flows which in not 
the case in flooding scenarios, or applied only to solve local flow effects.  
 
As it was mention earlier, the main drawback of a fully 3D approach is its 
computational cost, specially in environmental problems, where the spatial domain is 
very large and there are flow patterns of very different length scales involved in the 
flow. For that reason, it is not yet efficient to use the fully 3D approach in most 
environmental hydraulic flows. In shallow water flows it is possible to simplify the 3D 
RANS equations assuming a hydrostatic pressure distribution. In such a case the vertical 
momentum equation is simplified to the hydrostatic pressure equation, and therefore, 
only the two horizontal momentum equations need to be solved in a 3D computational 
mesh. The continuity equation is used in order to compute the free surface level, which 
in turn, defines the hydrostatic pressure distribution. A computational mesh in this case 
is often built as a 2D horizontal mesh with several layers in the vertical direction and 
with in this way well oriented simplified mesh generation can be archived for some 
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common environmental flow problems such as stratified flows. This approach is usually 
called a 3D SW equations computation and it has been used for simple or simplified 
geometries. Some work has been done using this 3D approach to model free surface 
flows in complex geometries using a singled value height-function formulation in order 
to track the free surface.  
 
Given their increased computational demand, it seems that NS or even Euler (inviscid) 
based models can be outflanked, regarding their practical effectiveness, by reduced 
simulation models for use in realistic flood propagation modeling.  
- 
- 
- 
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