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Summary 
 
Life evolved in aquatic ecosystems and the marine environment has been stable and 
better buffered against environmental change than terrestrial systems. It is therefore not 
surprising that marine ecosystems contain areas of high biodiversity and abundance. 
However, the theories that have been derived to explain the relationship between 
ecosystem function and biodiversity have largely been developed through work of a 
terrestrial nature.  
 
In recent years this bias is being reversed and more aquatic scientist are working in 
freshwater, transitional and marine environments to examine the generic applicability of 
diversity/functionality relationships. In some ways, these scientists are at an advantage 
to their terrestrial colleagues in that it is arguably more realistic to establish short-term 
experimental systems under aquatic conditions than in air. In addition, metrics of 
ecosystem function are often easier to record in water than in air. This short review 
introduces some of the advances made using aquatic models but considers some of the 
limitations inherent in such work and provides an indication of the challenges to come.  
 
1. Why research on aquatic systems has lagged behind 
 
The life form and functionality of aquatic organisms varies from terrestrial forms 
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principally because of the physical and dynamic implications of life in an aquatic 
medium. Terrestrial life evolved in aquatic environments and invaded land. In doing so, 
organisms adapted to a “dry” existence although dependence on water is still manifest 
in the life cycle of terrestrial organisms. As terrestrial organisms ourselves, it is not 
surprising that the study of the biodiversity/functionality relationship of terrestrial 
systems has outstripped that of aquatic systems.  
 
However, it can be argued from an evolutionary (the origin of life and the establishment 
of an oxygenic atmosphere), spatial distribution (surface coverage or volume), or 
functional role (carbon fixation, nutrient recycling) perspective that the aquatic habitat 
is of more global importance than the terrestrial one.  
 
The mechanisms that drive the functionality of aquatic systems are also different in 
scale to those of terrestrial systems. Water is a much more viscous medium than air and 
this has important implications for biogeochemical processes and organismal behavior. 
Transport processes lean towards the inertial and are thus more likely to be governed by 
advection rather than diffusion over any significant distances, and this establishes 
processes that show rapid (advective) exchange rates, supports the development of steep 
physical and chemical gradients and rapid biological processing.  
 
The ecosystem services provided by aquatic systems are well-recognized and are central 
to the global biogeochemical balance. This fact has always provided impetus to the 
study of aquatic ecosystem dynamics but these studies now attempt to incorporate 
socio-economic as well as ecological values. This has led to the concept of ecosystem 
services and a more widespread recognition of the “value” that humankind “obtains” 
from the natural cycling, or functionality, of biological systems.  
 
The economic valuation of ecosystem services is keenly contested (Pagioloa et al 2004) 
but the figures that arise serve to emphasize the relative importance of aquatic 
ecosystem services. The importance of aquatic systems on a global scale is unarguable 
and understanding the interplay between the organisms that inhabit this system and the 
ecosystem service they provide is an intellectually challenging and important 
consideration.  
 
However, the strategies used to conserve and protect habitats may vary between 
terrestrial and aquatic systems. Improved understanding of the functionality/diversity 
relationship in aquatic systems will contribute toward sensible conservation and/or 
sustainable exploitation strategies. The purpose of this short review is to highlight 
research questions and approaches to the understanding of the diversity/functionality 
relationship as applied to aquatic ecosystems.  
 
2. The nature of aquatic habitats 
 
The major subdivision of aquatic habitats is based on the salinity of the medium. This 
gives rise to three major aquatic habitat types: Fresh water systems, transitional and 
brackish waters, and marine systems. Fresh water is defined as having a salinity of less 
than 0.5 while sea water is generally regarded as having a salinity of >30 but these 
definitions are narrow and open to regional interpretation. For example, the Baltic Sea is 
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an enclosed water body with a limited connection to the North Sea via a narrow sound 
between Denmark and Sweden. Salinity is often below 30 and the environment could be 
regarded as brackish rather than marine although in many other ways the system is more 
like a sea than a brackish lake.  
 
Marine systems are generally considered to show higher levels of biodiversity than 
freshwater systems which are in turn more diverse than transitional (brackish) waters. 
This is an expression of the well-known Remane’s curve (Figure 1). The use of salinity 
as an axis here is debatable and this curve may obscure more complex analysis of the 
system involved.  
 
The reduction in biodiversity for transitional systems is usually explained through the 
physiological problems of living where salinity varies on a regular (tidal) basis but this 
is now recognized as too simplistic. The restricted nature of the habitat, the relatively 
short geological life span of transitional waters and the unstable nature of the 
substratum may be equally if not more important than salinity per se as a first order 
parameter controlling biodiversity. 
 

 
 

Figure 1. Schematic representation of Remane’s curve. The number of species is plotted 
against salinity and shows a region of reduced diversity (grey shaded area) where fresh 

water and sea water meet. These “transitional waters” are often considered to be 
depauperate. 

 
2.1. Fresh water ecosystems 
 
Fresh waters are usually divided into standing (lentic) systems with no overall direction 
displacement of the medium and flowing (lotic) system where there is a measurable and 
consistent directional flow. A recurrent question concerning the biodiversity of 
freshwaters is why the number of freshwater species is relatively low in comparison to 
marine systems. A number of suggestions have been put forward (Moss 1998) 
including: 
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• The directional flow acting as a barrier to species migration and colonization; 
• The relative variability of physicochemical conditions in freshwaters, and 
• Relative geological youth of freshwater systems 

 
The first and second possibilities seem unlikely but the final possibility has some 
support (Moss 1998). Circumstantial evidence of the importance of geological age in 
the evolution of specialist forms, and therefore the increase in speciation is given in 
circumstances where freshwater systems are known to have an extended geological 
stability. Examples of “ancient lakes” are commonly cited: Lake Chilwa (Malawi) and 
Lake Baikal (Russia). These systems have a long geological record and harbor endemic 
species showing evidence of specialization and unexpectedly high diversity. 
 
2.2. Marine ecosystems 
 
Marine systems have been stable for far longer than most terrestrial systems and some 
show extremely high levels of biodiversity with typical examples being coral reef 
systems and seagrass meadows. However, most marine habitats are relatively poorly 
studied simply because of the difficulty in sampling the deep systems which comprise 
the vast majority of the marine system.  
 
The relative heterogeneity of habitat in marine systems, geological age, volume and 
therefore buffering capacity has allowed the diversification and maintenance of varied 
biological forms. As sampling methods have improved there has been a re-interpretation 
of deep sea, and even coastal biodiversity but the actual level of biodiversity to be found 
in the ocean is a matter of debate.  
 
2.3. Transitional waters 
 
Transitional waters are often restricted in diversity as a result of a combination of 
factors but young geological age and high frequency of disturbance and physiological 
stress are probably especially influential. The ecosystem services that arise include 
storage of sediment, flood defense and storm buffering, maintenance of water quality 
and support of coastal and marine food chains.  
 
While the systems are considered depauperate, however, many organisms have become 
adapted to either reside permanently in transitional system or exploit them at certain 
stages of their life cycle (e.g. juvenile fish). In addition not all functional groups are 
depauperate. Many surveys neglect the smaller organisms that exploit the available 
resources under conditions where competition from larger forms is restricted by the 
physical setting (shear and drag).  
 
A high diversity of cryptic consumers are found among the meiofauna associated with 
the surface sediments while the role of primary producer falls to the microphytobenthos 
(unicellular algae) which show a wide variety of forms, several hundreds of species 
coexisting in one system (see Figure 2).  
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Figure 2. Light micrographs and sketches showing some of the diversity of 
microphytobenthos in a small sample of the surface of intertidal cohesive sediment. 
Eight different species of diatom are shown with varying morphological features but 

similar functional roles. 
 
This varied group of microbial eukaryotes have been used to investigate simple 
biodiversity/functionality questions in ecology and ecosystem response (Defew et al. 
2002, Hagerthey et al. 2002). These cryptic forms highlight the problem that research on 
“biodiversity” rarely concerns the total diversity of the system but is usually 
biodiversity in the “eye of the beholder” (Bengtsson, 1998).  
 
This particularly applies as organism become smaller and more cryptic: for example the 
meiofauna; protista; bacteria; and viruses, of which we know very little in terms of 
overall distribution and abundance. This remains a major challenge in terms of 
biodiversity research.  
 
A second advantage of aquatic ecosystems is that assemblages are often more malleable 
and open to experimental manipulation. This applies to soft sediment deposits as well as 
benthic sessile systems and many advances are now being made using field 
manipulation of natural assemblages. Scale relationships in these systems are still 
problematic and interpretation of such experiments requires recognition of such 
limitations.  
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