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Summary 
 
In all its facets, biodiversity is strongly determined by spatial heterogeneity and 
temporal variability of the environment. Populations, communities, and ecosystems are 
constantly changing over a broad spectrum of geographic scales and over both short-
term ecological time scales and evolutionary-relevant scales. Therefore, biodiversity is 
in a continuous flux. Spatial heterogeneity at the habitat, landscape and continental 
levels plays an important role in controlling biodiversity dynamics. Dynamic biotic 
processes such as interspecific competition and mutualistic interactions are important 
for the generation and variation of biodiversity. However, the individual importance of 
controlling factors and the relationship between ecosystem functioning and biodiversity 
dynamics are still a matter of debate.  
 
The survival of species is strongly controlled by stochastic extinction and colonisation 
processes in habitat patterns that are governed by, for example, the number of occupied 
sites and their degree of isolation. Worldwide, increasing fragmentation of formerly 
contiguous ecosystems poses a severe threat to species forming metapopulations when 
extinction rates of local populations exceed colonisation rates. Lack of knowledge about 
central processes determining the spatial distribution of species in communities and 
ecosystems is a serious problem for planning conservation measures to counteract the 
effects of fragmentation (e.g. edge effects, genetic impoverishment).  
 
Temporal fluctuations of environmental factors are likewise of importance for the 
regulation of biodiversity dynamics. Of particular importance are disturbances which 
can cause a mosaic of different successional stages occurring side by side. Temporal 
fluctuations in the spatial extent and severity of disturbances produce a shifting mosaic 
of adjacent patches of different successional stages which tends to support a maximum 
of species diversity at intermediate levels of disturbance. At an evolutionary time scale 
biodiversity dynamics are influenced by a complex interplay of biotic (e.g. competition, 
dispersal) and abiotic (e.g. climate, soils) factors. 
 
1. Introduction 
 
Biodiversity is constantly changing over different scales. The influence of regional, 
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biogeographical, historical and evolutionary processes occurring at large spatial and 
temporal scales determines biodiversity dynamics on a broad spectrum of time and 
space. “Biodiversity dynamics” refers to the natural turnover of populations and 
communities on the one hand, and of taxa on the other hand, whereas turnover means 
origination and extinction at predominantly continental to global scales, and 
colonisation and disappearance at local to continental scales.  
 
The factors, processes and principles that are fundamental for the comprehension of this 
dynamic nature of biodiversity occur on a wide range of scales in biotic and abiotic 
conditions, like the influence of geological transformations of the Earth’s surface, 
speciation, habitat patch dynamics, interspecific interactions, mutation, genetic drift, 
and many other features. Also large temporal and spatial ranges have to be considered if 
one wishes to unveil this dynamic aspect of nature. 
 
Interactions among species, like interspecific competition and mutualism, play an 
essential role in the generation and in the dynamics of biodiversity. On an ecological 
time-scale interspecific competition can restrict the number of co-existing species, but 
simultaneously lead to a diversification of species' traits. Even though predation has 
direct negative effects on the prey consumed, it can cause a notable increase in prey 
diversity. Such interactions and many more functional relationships are widespread in 
most ecosystems and vital for dynamics of biodiversity.  
 
As these relationships link species to each other, a loss of one species could easily cause 
the loss of other species and changes in the ecosystem in a kind of a domino effect. At 
an evolutionary time scale, interspecific interactions account for the evolutionary 
generation of biodiversity; in the course of the coevolution of species new biological 
traits develop continuously. 
 
Spatial heterogeneity and temporal variability of the environment rigorously determine 
biodiversity dynamics at the community and ecosystem levels. Temporal changes of the 
environment enhance the potential for the co-existence of species like in gap-forming 
processes that provide species requiring open space with new potential habitats. This 
interplay of recurrent disturbance and (re)colonisation creates a shifting mosaic of 
patches at different successional stages. Many systems tend to show highest species 
diversity at intermediate disturbance intensity and frequency. 
 
To date, biodiversity research has primarily focused on the assessment and description 
of existing biodiversity patterns and on the rapidly advancing biodiversity decrease due 
to anthropogenic impact. Knowledge on the dynamics of biodiversity has predominantly 
been derived from data assessed by the classical disciplines of biogeography, 
geobotany, population biology, evolutionary biology, and genetics, often before 
biodiversity research was established as a discipline. 
 
This chapter concentrates on the natural causes and consequences of biodiversity 
dynamics at different spatial and temporal scales. One section focuses on temporal 
dimensions, another on spatial dimensions. This aims to facilitate the conception and to 
highlight the importance of each dimension, though they are often linked to a lesser or 
higher degree. The subsequent discussion of the interrelations of biodiversity dynamics 
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and ecosystem functions is related to the temporal dimension; this is a complex matter 
that has to date been recognised only in some qualitative aspects. A separate section 
considers dynamics across ecological, geological and evolutionary scales, discussing 
diversity dynamics across historical time periods and at a global level. 
 
2. Temporal dimensions of biodiversity dynamics 
 
2.1. Biodiversity dynamics at the population level 
 
2.1.1. Succession 
 
By the early eighteenth century, the phenomenon of directional change in vegetation 
composition over the years was raising scientific interest, and in 1806 the term 
‘succession’ was introduced in its present meaning. Succession goes along with notable 
diversity changes and is thus an important natural cause for biodiversity dynamics at 
local to regional levels. Two main types of succession can be distinguished: (i) primary 
succession which starts on uncolonised or redeposited bare substrates, and (ii) 
secondary succession which starts on sites where the former vegetation cover has been 
destroyed or severely disturbed, but soil formation processes have already taken place 
and soil seed banks are still present. 
 
Primary succession has been described for sand dunes, alluvial deposits, young glacial 
retreat zones, and volcanic deposits. Indispensable for primary succession is an import 
of diaspores, mainly as seeds conveyed by wind or water from other sites, subsequently 
leading to an increase in diversity. Nomadic plants with anemochoric seeds are often the 
first colonisers of these areas. During primary succession initial soil formation occurs, 
facilitating the establishment of further species due to improved site conditions. Besides 
the numbers of species, biodiversity increases in many other aspects like the variety of 
life forms and functional relationships and the spectrum of plant dispersal types.  
 
These include an augmenting variety of animal-dispersal modes by, for instance, birds, 
ants, rodents or other mammals. The time span until the end of the primary succession 
phase depends on climate, substrate, and species immigration onto the site. On lava 
deposits in southwestern Japan, a forest vegetation dominated by the tree Machilus 
thunbergii (Lauraceae) established after 700 years, whereas nutrient-poor quartz-sand 
dunes at Lake Michigan were colonised by oak forest after some 1000 years. 
 
During secondary succession, the velocity of biodiversity dynamics is generally higher, 
compared to primary succession. Soil formation has already taken place and the soil 
seed bank and an often considerable amount of vegetative propagules accelerate the 
(re)establishment of secondary vegetation. In both types of succession the quality of the 
adjoining habitat types and the size of the succession area influence the temporal 
dynamics: the smaller the distance from a seed source the faster the succession and 
diversity dynamics will be.  
 
Severe soil degradation can lead to a major drawback in secondary succession, and the 
return of the original habitat type can be awkward. A prominent example is the 
Mediterranean low shrub formation Garigue, which forms a final successional stage 
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after the evergreen sclerophyllous Quercus forests that originally had surrounded nearly 
the entire Mediterranean were cleared in Roman times and soils severely degraded. 
Under these circumstances, biodiversity dynamics are lower for several decades to 
centuries after disturbance. 
 
Biodiversity dynamics during primary and secondary succession are largely determined 
by the life histories of the colonising species. Colonisers can be classified as the 
ecological types of selection r and K, according to the logistic rates of population 
growth. R-selected species maximise the intrinsic rate of population increase (r). Every 
time favourable conditions become effective in an unsaturated community (e.g. 
sufficient light, heat, and moisture in a newly created habitat) the species immediately 
colonise the area with great numbers of individuals that quickly complete a short 
reproduction cycle. Such species are vagile opportunists, favoured in rapidly changing 
environments as in the early stages of succession. It follows that at first, biodiversity is 
immediately raised due to the increase in species number. As subsequently equitability 
and structural heterogeneity of the young community rapidly decrease, biodiversity 
dynamics temporarily decelerate until the next community turnover occurs. 
 
In contrast, K-selected species maximise their competitive ability in response to stable 
environmental resources that are exploited to a relatively high degree. This implies 
selection for low birth rates, high survival rates among offspring, and prolonged 
development times of the growing individuals and the entire populations, i.e. a strategy 
of equilibrium species. K represents the carrying capacity of the environment for 
species populations showing an S-shaped population-growth curve. In consequence, 
these are late-successional species that cause a steady increase in species number, 
equitability, and structural heterogeneity after the short-living r-selected species have 
receded. As these two types of selection represent contrasting extremes, most species 
are located somewhere along an “r-K continuum”, causing biodiversity dynamics to 
vary in every single case. 
 
Results from old-field studies on secondary succession have shown distinct shifts in 
vegetation composition, often starting from a herbaceous stage, followed by grass 
dominance which gives way to shrubland stages due to the slow invasion of woody 
species, eventually leading to a forest. As the physiognomic changes during this 
successional sere occur abruptly, the term ‘relay floristics’ developed, referring to the 
functioning of an electronic relay. According to this theoretical framework, biodiversity 
dynamics display sudden changes, interrupted by phases of stagnation. 
 
The question at which instant a species actually arrives at an old field is a matter of 
controversy. The model of initial floristic composition postulates that most late 
successional species (like shrubs and trees) are already present at the beginning of the 
regeneration process. They are either part of the soil seed bank or present with 
vegetative propagules, rhizomes, or a sapling bank. This model suggests comparatively 
low species dynamics during secondary succession. 
 
The organismic concept of plant succession analogises succession with the 
convalescence of an organism to reach the climatic climax vegetation and, in 
consequence, a concomitant biodiversity climax at the end of a succession. This 
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monoclimax theory was rejected and amended through the polyclimax theory into an 
individualistic concept. New models, like obligatory succession and competition 
hierarchy, were derived from the probability theory, supposing that in the course of 
succession an equilibrium would be reached that also stands for a certain diversity level. 
The focus was moved from simplifying explications for complete successional lines to 
the differentiation of causes and mechanisms of succession.  
 
The controversy about the contiguity of succession and stability resulted in a more 
sophisticated view on stability of ecosystems, differentiating in resilience and 
resistance. In this context resistance is the ability of an ecosystem to maintain itself and 
its biodiversity after the occurrence of a relevant impact, i.e. disturbance. Resilience is 
the ability of returning into the original state after a moderate temporary change has 
occurred due to disturbance.  
 
This distinction in conjunction with the accentuated view on the mechanisms of 
succession helped the disentanglement from older ideas about a final stable state of 
succession and diversity, characterised by low entropy, high degree of organisation, 
high resistibility against environmental changes and highly linked-up food chains. The 
former deterministic and idealised view has been replaced by one that is orientated on 
probabilities. Here, disturbance plays an important role as it most commonly influences 
biodiversity dynamics due to the creation of spatial heterogeneity in time (see Box 1). 
 

Disturbance 
 
Various definitions exist for disturbance. They all have in common any 
relatively discrete event in time that disrupts ecosystem, community, or 
population structure and changes resources, substrate availability or the 
physical environment. The key issues are that disturbances are discrete in 
time, in contrast to chronic stress or background environmental variability, 
and that they cause a notable change in the state of the system. 
Disturbance has variously been defined in terms of the effect on 
demography, community, and ecosystem. 
 
1. Demographic definition—an event that causes death to one or more 
dominant individuals. 
2. Community definition—an event that causes alteration of composition or structure of 
the vegetation. 
3. Ecosystem definition—an event that causes a release of a previously unused resource. 
 
Disturbance increases the spatial heterogeneity in the availability of 
nutrients, light, moisture and space for new growth by existing or 
replacing species. A disturbance can have a major effect on biodiversity 
dynamics due to changes in successional pathways as a consequence of 
changed species interrelationships at the site; these can be ephemeral or 
long-lasting. In some ecosystems like floodplains or closed forests of the 
non-tropics, natural disturbance is a crucial factor for maintaining the 
coexistence of certain species and, thus, a higher biodiversity. 

 
Box 1. Disturbance 
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On a regional scale important parameters determining diversity dynamics include local 
community size, immigration and emigration rate, and abundance of species within the 
metacommunity. Disturbance frequency and intensity account for extinction as well as 
the isolation degree, leading to a low immigration rate. 
 
2.1.2. Genetic diversification 
 
Speciation and extinction rates determine biodiversity dynamics up to the global level. 
Natural causes for species extinction and hence losses in biodiversity span fire, 
hurricane, freeze damage, fluctuating water levels in basins, landslides, lava flows, as 
well as biotic causes like insect calamities, disease, predation, burrowing animals, and 
many others.  
 
Speciation is the process of formation of isolated reproductive populations. As habitat 
fragmentation can lead to the genetic isolation of formerly connected populations, it can 
cause speciation. Animal populations often occur in scattered colonies forming a 
mosaic.  
 
Regular seasonal disturbances lead to predictable fluctuations in population size and 
distribution. Unpredictable regional and temporal disturbances lead to reductions in 
population size and even to local extinctions. If there is no evolutionary pressure (e.g. 
selection, mutation) the genetic variance will remain quite stable in large populations. In 
small, isolated populations, an overall reduction in genetic variability occurs due to 
stochastic changes in gene frequencies (genetic drift).  
 
Following disturbance these populations undergo stages of critical population sizes 
exerting a bottleneck effect on genetic diversity. Also founder colonies start with a 
rather low genetic variability and have to pass a bottleneck stage. 
 
One consequence of a small population size is a higher degree of inbreeding, causing 
low genetic variability within individuals and reducing the fitness of the entire 
population—the so-called inbreeding depression. The reduced fitness can result in 
smaller seed size, reduced fertility and/or reduced germination rate compared to the 
parent generation.  
 
Cross-breeding, on the other hand, results in progeny showing increased performance, 
like vigorous growth or increased seed production. This heterosis occurs as a result of 
high heterozygosity—being one measure of genetic diversity. Heterosis is one of the 
stabilising forces maintaining biodiversity. A genetically higher variation in a 
population reduces the risk of inbreeding depression and increases the fitness up to a 
limited extent (Figure 1).  
 
In consequence, the genetic variability within a population, the biotic diversity of 
species per given area, and the diversity at various taxonomic levels are not constant 
characteristics inherent to certain natural entities, but are continuously subject to change 
at various scales. 
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Figure 1. Degree of fitness with respect to heterozygosity. 

P: threshold value for heterozygosity, left of P: inbreeding depression with a loss in 
fitness, dashed line: accelerated decline in the fitness of recombinant progeny, right of 

point T: decrease in fitness due to incompabilities between highly integrated 
development programs. After Vrijenhoek R. C. (1985). Animal population genetics and 

disturbance: the effects of local extinctions and recolonisation on heterozygosity and 
fitness. In: Pickett S. T. A. & White P. S. (eds.): The ecology of natural disturbance and 

patch dynamics: 266–286. Academic Press, London. 
 

- 
- 
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