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Summary 
 
Sanitary landfill represents one of the oldest and most common methods of municipal 
solid waste (MSW) disposal. Over the years, with the advancement of science and 
technology, design, operation, and maintenance of sanitary landfills have greatly 
improved resulting in facilities that are efficient, environmentally compatible, and free 
from many of the problems that created an image of a “dirty, smelly, and leaky” facility.  
 
Indeed, modern landfills that are properly designed and comply with all regulations that 
go into site selection, design, construction, and operation of landfills, assure not only a 
clean and safe facility but a potential source of energy that helps in reduction of 
greenhouse gases that contribute to global warming. Once the waste is disposed of into 
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a sanitary landfill, its organic constituents undergo a complex series of physical, 
chemical and biological reactions, causing its conversion into simpler compounds. The 
rate of waste degradation depends on various factors, and generally takes several years 
for the process to complete.  
 
The main by-products of reactions are landfill gases and leachate, generated at various 
stages of waste decomposition. Proper management of landfill gases and leachate is 
essential to prevent environmental pollution. Extensive landfill design criteria, including 
proper site selection, for construction of new landfills and expansion of existing 
landfills, have been developed to address various environmental and aesthetic concerns. 
If properly designed and managed, sanitary landfill is still the best economical solution 
for MSW disposal.  
 
This paper discusses the salient features and general design principles of sanitary 
landfills. 
 
1. Introduction 
 
Waste generation can be traced as far back as the beginning of human civilization. The 
term ‘waste’ is defined as any material that is discarded, abandoned, or is not of any 
direct economical value to its owner and which bears an environmental liability. Waste 
can be broadly classified into solid, liquid, or gaseous wastes with many other 
intermediate categories (for example semi-solid, semi-liquid etc.). Of these, solid waste 
is one of the most critical one from waste management point of view, as without proper 
disposal it can cause air, land, and water pollution; odor, spread of different types of 
vector-borne diseases, and aesthetic deterioration of the environment.  
 
Landfilling – defined as placing solid and semi-solid wastes on the ground, compacting 
and covering it with suitable materials to isolate it from the environment – is still one of 
the most common and favored methods for solid waste disposal. In recent years 
expansion of cities and growth of human population worldwide have resulted in a 
decrease in availability of land for waste disposal. In addition, years of uncontrolled and 
unplanned dumping of waste on land have caused severe groundwater, soil, and air 
pollution in different parts of the world.  
 
Awareness of and necessity for effective solid waste management led to the modern day 
concept of sanitary landfill. Most of the developed and developing countries today use 
design criteria that take into account topography, site geology, and hydrogeology, along 
with engineering, economic, and legal requirements for the construction and operation 
of landfills.  
 
In general, solid waste comprises non-liquid, non-soluble materials ranging from 
municipal garbage to industrial wastes that contain complex and hazardous substances 
(Shah, 2000). Solid waste includes household garbage, commercial waste, industrial 
waste, wastewater treatment plant sludge, sewage, agricultural refuse, construction and 
demolition (C & D) wastes, mining residues, etc. Municipal Solid Waste (MSW), which 
is a part of the total solid waste stream, includes commercial and residential wastes 
generated in municipal areas, either in solid or semi-solid form, excluding industrial 
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hazardous wastes. In the United States in 2007, the total amount of MSW generated was 
254 million tons (230.4 million metric tons; MMT), or 4.62 lb (2.1 kg) /person/day of 
which 137.2 million tons (124.5 MMT) or 54% was disposed of in landfills (U.S. EPA, 
2008). 
 
Landfill design includes protective measures against pollution of groundwater, surface 
water, fugitive dust, wind-blown litter, odor, fire hazard, bird menace, pests or rodents, 
greenhouse gas emissions, slope instability, and erosion (The Gazette of India, 2000). 
Solid wastes are disposed of in a landfill in thin layers, compacted to the smallest 
practical volume, and covered with suitable earth material each day to abate 
environmental pollution (Weiss, 1974). These measures minimize potential pollution 
problems and isolate the waste from exposure to the environment, making it “sanitary.”  
 
Sanitary landfills have also been loosely defined as disposal facilities that normally, but 
not necessarily, are located in areas serving populations of 5,000 or more and may 
accept all types of municipal solid wastes (Environmental Protection Division, 
Government of British Columbia, 1993).  
 
The concept of sanitary landfilling was first introduced in the United Kingdom in 1912; 
in the United States sanitary landfilling became a common method of MSW disposal 
during the 1930s (Hasan, 1996). The Fresno Sanitary Landfill, located in Fresno, 
California, is the oldest sanitary landfill in the United States that started in 1937 and 
ceased its operation in 1987 (Historicfresno.org, 2008).  
 
Based on the most recent data available with the United States Environmental 
Protection Agency (U.S EPA), municipal solid waste generation has grown steadily in 
the United States, from 88 million tons (79.83 MMT) in 1960 to over 254 million tons 
(230.4 MMT) in 2007 (U.S. EPA, 2008). During the 1960s and 1970s most of the MSW 
was disposed of as open dumps and a portion burnt to reduce its volume. Increasing 
concern for maintaining air and water quality gradually changed this age-old practice 
and led to disposal of waste in sanitary landfills.  
 
According to the most recent data, the number of sanitary landfills in the United States 
has decreased steadily during the past decades, from 7,924 in 1988 to 1,754 in 2007 
(U.S. EPA, 2008). As the number of landfills decreased, the size of landfills became 
larger, keeping the landfill capacity relatively constant. In 2007, the total MSW landfill 
capacity left in the United States was estimated to be 7,406 million tons (6,718.6 
MMT), which was slightly higher than the remaining MSW landfilling capacity of 
6,542 million tons (5,934.8 MMT) as was estimated in 1991 (Waste Business Journal, 
2008).  
 
Increasing interest in resource recovery, reuse, and recycling along with adoption of 
best management practices have led to considerable decrease in the bulk of MSW that 
ends up in landfills, which in turn has increased the number of years of available landfill 
capacity. Improved engineering design and sound environmental practice in landfill 
construction and maintenance have also increased the capacity and life of many existing 
landfills.  
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2. Biochemical Processes in Sanitary Landfill 
 
Waste decomposition in sanitary landfill is a complex process achieved through 
sequential and sometimes simultaneous occurrence of a variety of chemical and 
biochemical reactions, resulting in degradation of waste materials. Organic fractions of 
MSW easily decompose leading to generation of landfill gases and liquids.  
 
Initially, the biochemical reactions in a sanitary landfill take place under aerobic 
condition (where oxygen is the terminal electron acceptor), producing carbon dioxide 
(CO2) as the principal gas. As most of the available oxygen (O2) is depleted, 
decomposition reactions continue under partial aerobic to mostly anaerobic conditions, 
where the principal landfill gases generated are CO2, methane (CH4), trace amounts of 
ammonia (NH3), and hydrogen sulfide (H2S). The generalized biochemical reaction for 
the anaerobic decomposition of MSW can be expressed as (Tchobanoglous et al., 1993): 
 

2CO other gases+ +        (1) 
 
Based on the generation of principal landfill gases and physico-chemcial conditions, 
five sequential phases can be identified over the lifetime of a sanitary landfill (Figure 1). 
Duration of individual phases, and nature and quantity of various landfill gases 
generated during each phase, are primarily dependent on the amount of biodegradable 
organic matter present in the waste, availability of moisture and nutrients necessary for 
biodegradation, and final landfill closure measures.  

 
 

Figure 1. Schematic representation of landfill gas generation phases. 
[Adapted from: U.S. EPA, 2004 and other sources.] 

 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

ENVIRONMENTAL AND ENGINEERING GEOLOGY – Vol. III - Sanitary Landfill - Suman Ghosh, Syed E. Hasan 

©Encyclopedia of Life Support Systems (EOLSS) 

Phase I – Initial Adjustment: This is the initial phase in the life cycle of a sanitary 
landfill during which the organic constituents easily biodegrade: organic compounds in 
the MSW undergo microbial decomposition mostly under aerobic conditions as soon as 
they are placed in the landfill and soon thereafter. Typical duration of this phase is few 
hours to about a week from the time of waste emplacement (Tchobanoglous et al., 
1993).  
 
The air trapped within the landfill supplies O2 promoting aerobic processes. 
Microorganisms – the principal agents in biodegradation – mainly come from the soil 
used for daily cover. Sometimes wastewater treatment plant sludge and recirculated 
leachate also act as sources of microbial population necessary for bio-decomposition of 
the waste. Primary gases generated in Phase I are N2 and O2 that occur in the same 
proportion as in the atmosphere. 
 
Phase II – Transition Phase: This is partly aerobic and partly anaerobic phase during 
which transition from aerobic to anaerobic condition occurs within the landfill. Oxygen, 
already consumed and depleted during Phase I, leads to mostly anaerobic condition. In 
the absence of O2, nitrate and sulfate become the terminal electron acceptors generating 
nitrogen and hydrogen sulfide respectively.  
 
The transition from aerobic to anaerobic conditions can be monitored by measuring the 
oxidation/reduction potential of the waste (Tchobanoglous et al., 1993). Any leachate 
formed during the transition phase is generally acidic in nature due to the generation of 
organic acids and elevated concentrations of CO2 within the landfill. pH during this 
phase usually ranges from 6 to 7 (Pohland and Kim, 1999) and typical duration of this 
phase is approximately 1 to 6 months. 
 
Phase III – Acid Phase: In this phase, the microbial activities increases significantly 
leading to generation of considerable amounts of organic acids and minor quantities of 
hydrogen (H2) gas. This is a three-step process of which the first step involves 
hydrolysis where lipids, polysaccharides, proteins, nucleic acid, and other higher 
molecular-mass compounds undergo enzyme-mediated transformation and change into 
compounds that are used by microorganisms as a source of energy.  
 
The second step, called acidogenesis, involves biochemical conversion of higher 
molecular-mass compounds, resulting from the first step reaction, into lower molecular-
mass intermediate compounds, mainly acetic acid (CH3COOH), with small 
concentrations of fulvic and other complex organic acids (Tchobanoglous et al., 1993). 
The third step results in conversion of the intermediate compounds, through microbial 
activities, into simpler products, mainly CO2 and CH4 that attain its peak in Phase IV. 
The microorganisms, referred to as acidogens or acid formers, are dominated by 
facultative and obligate anaerobic bacteria.  
 
Any leachate that might form in Phase III is acidic, with pH of 5 or less (due to the 
presence of organic acids and higher concentrations of CO2 in the landfill). Because of 
the lower pH many inorganic constituents, including heavy metals, are dissolved in the 
leachate that makes it highly toxic. Typical duration of this phase is approximately 3 
months to 3 years. 
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Phase IV – Methane Fermentation Phase: This phase is unique for its methane 
generation. A specific group of strict anaerobes, called methanogens, convert 
CH3COOH and H2, formed in Phase III, to CH4 and CO2. Although acid production still 
continues, the rate of acid formation is substantially reduced that causes the pH of the 
leachate to increase toward neutral values (between 6.8 and 8) during Phase IV 
(Tchobanoglous et al., 1993). Continued rise of pH ultimately causes some inorganic 
constituents to precipitate out of the leachate. Typical duration of this phase is 
approximately 8 to 40 years, and the principle gases are CH4 and CO2. 
 
Phase V – Maturation Phase: This is the last phase in the life cycle of a sanitary 
landfill. Once the easily biodegradable organic materials are depleted (as discussed 
earlier), microorganisms start decomposing other difficult to biodegrade materials 
during Phase V. However, the rate and extent of biodegradation depend on availability 
of moisture. CH4 and CO2 are the principal landfill gases generated during this phase; 
and small amounts of O2 and N2 may also be found depending on the landfill closure 
measures (Tchobanoglous et al., 1993).  
 
The rate of landfill gas generation decreases sharply from the previous phases as the 
amount of available biodegradable organic matter is greatly depleted during the 
maturation phase. The leachate generated at this phase often contains humic and fulvic 
acids that are recalcitrant compounds and are very difficult to biodegrade. Typical 
duration of this phase is approximately 1 to 40 years. 
 
3. Landfill By-Products: Leachate and Gas 
 
As discussed before, the two main by-products generated during the life of a landfill are 
leachate and landfill gases. Landfill leachate may be defined as a toxic, mineralized 
liquid, generated during the waste decomposition process. Depending upon the nature of 
waste and design of the landfill, the composition and amount of leachate and gas 
generated vary to a great extent. This section describes the nature of leachate and 
landfill gases and the associated management system that is needed for proper 
functioning of a sanitary landfill.  
 
3.1. Landfill Leachate 
 
Chemically bound water which is present in many MSW constituents, along with water 
from external sources, such as rainfall, snowmelt, groundwater, springs, surface water 
bodies, etc., entering through the solid waste results in removal of many biological and 
chemical materials in solution (leachate), causing it to acquire a very high dissolved and 
suspended solid content, both organic and inorganic. Based on the nature of solid waste 
and age of the landfill, composition of the leachate also varies.  
 
The biodegradability of leachate depends on the amount of biological materials present 
in the leachate, which varies during the life of a landfill. The BOD5/COD ratio provides 
a good measure of biodegradability of the leachate that typically ranges between 0.05 
and 0.2 in mature landfills. Higher BOD5/COD ratio indicates presence of easily 
biodegradable materials in the leachate while low BOD5/COD ratio indicates presence 
of difficult-to-biodegrade materials.  
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Leachate is generally collected at the bottom of the landfill; in unlined landfills, leachate 
usually migrates through the underground strata and may travel down to the 
groundwater table. Some lateral migration of the leachate is also possible depending on 
the subsurface geology.  
 
The migrating leachate can dissolve soluble chemicals, many with toxic constituents 
that may result in groundwater pollution. Hence proper leachate management 
procedures should be developed and incorporated into the design of landfills. In the 
U.S.A., double liners, and leachate and gas management systems are required by law for 
all landfills built after 1994.  
 
One of the key components of leachate management system is the use of landfill liner to 
control/restrict the movement of leachate offsite. Different types of liner systems are 
used depending on the characteristic of the leachate, subsurface geology and other 
design objectives.  
 
Clay is the most commonly used liner material, but geosynthetic membrane liners are 
also widely used in sanitary landfills. As part of the leachate management system a 
grading plan is developed which includes installation of drainage channels and pipelines 
for leachate collection and transport.  
 
Leachate collection, removal, holding, and treatment facilities are also part of the 
leachate management system. Leachate collected from landfills is generally placed in 
holding tanks for 1-3 days, but is eventually disposed off through leachate recycling, 
evaporation, underground injection, physical-chemical, or biological treatment, and/or 
discharged into municipal sewer system after treatment.  
 
The leachate disposal method depends on the nature of the leachate, the quantity of 
leachate generated, subsurface geology, local government policies, etc.  
 
Design of the landfill liner system and layout of leachate collection pipes hold the key 
to successful operation of a leachate management system. The liners are generally 
placed at a minimum of 2% slope and pipes are laid at 1% slope (minimum) to facilitate 
the flow of leachate through the collection system (Tchobanoglous et al., 1993). This 
prevents the accumulation of leachate in the low lying areas of the landfill.  
 
Leachate collection pipes are generally placed in a trench or on the liner and are buried 
in a bed of gravel to protect it from crushing due to overburden pressure. Subsurface 
barriers are also sometimes used in association with natural geologic materials to 
prevent lateral leachate migration.  
 
Barriers are designed and constructed to prevent build up of any hydraulic head against 
the structure. This is accomplished by using a minimum of 2 feet (0.61 m) of clay or a 
minimum of 40 mils of synthetic materials (Tchobanoglous et al., 1993).  
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