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Summary 
 
The world’s population annually consumes about 32 billion tonnes of mineral resources 
valued at about $1,123 billion. All elements that comprise these economic deposits are 
present in the earth’s crust, most of them in the range of parts per million, some even in 
percent range. Yet, to produce an element from the earth’s crust economically, a mineral 
deposit must have undergone natural enrichment process.  
 
A mineral deposit is a body, from which by size and concentration a commodity can be 
mined economically. It consists of reserves and is largely defined by its grade and its 
tonnage. 
 
Enrichment and concentration processes are greatly influenced by geology. Each 
element and each commodity has a specific geologic association. This leads to a very 
uneven distribution of mineral deposits around the world. Enrichment basically either 
occurs in trap situations of varied origins or by weathering processes. The enrichment 
process can be conducive to mining if the mineral is concentrated in a favorable 
geometric form of considerable size or if the element is enriched in an amenable form 
for processing.  
 
From the viewpoint of consumers, a large diversification of producers secures regular 
supply of minerals. Recent trend of mergers and takeovers has resulted in concentration 
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of companies in a particular country. Concentration of producers in a few countries 
must not necessarily have an adverse impact on the security of supply because the 
commodity could still be produced by different companies. 
 
The future availability of resources is usually estimated using the expression lifetime, 
which is the quotient of known reserves and current annual consumption. However, 
reserves lifetime is not a suitable index for measuring the future availability of minerals 
but rather a snapshot in time. For all mineral commodities so far a stable balance has 
occurred between consumption and reserves during the past 50 years. This was largely 
achieved by the on-going mineral exploration. Another aspect is that humans do not 
need specific minerals as such, but products made from them, needed to perform a given 
function. Minerals provide all resources of the geosphere for human use. By combining 
the available resources of the geosphere and the technosphere with our ingenuity we can 
be assured of fulfilling our needs for the foreseeable future. 

 
1. Introduction 

 
In the EOLSS-Forerunner paper 1.12 World Natural Resources Policy (with focus on 
Mineral Resources) a hierarchy of natural resources was proposed with regard to the 
concept of sustainable development and a responsible future (Wellmer and Becker-
Platen, 2001; Figure 1). 

 

 
 

Figure 1. Concept of the natural resources hierarchy: resource management for 
sustainable development (after Wellmer and Becker-Platen 2001) 
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At the top of the hierarchy (Level 1) are the energy resources, followed by those 
resources which have to be produced from deposits based on enrichment processes that 
include nearly all metals and some non-metallic raw materials, like phosphate, 
fluorspar, or barite for example (Level 2).  
 
The next one in the hierarchy (Level 3) is made up of those raw materials which by 
nature are available in an unlimited amount in the earth’s crust, such as construction raw 
materials, potash and magnesium in sea water, or nitrogen in the air as a base for nitrate 
fertilizer.  
 
The lowest level (Level 4) consists of waste and residue materials that can substitute for 
other primary materials higher up in the natural resources hierarchy. 

 
Since energy is dealt with elsewhere in the EOLSS-series, only Level 2, 3 and 4 are 
being discussed here. Ways by which waste and residue materials from burning—ashes 
from coal fired power plants, used for cement manufacturing—or by-products from 
beneficiation of higher value metallic ores superior within the hierarchy, utilized in the 
construction industry, can replace primary resources, have also been discussed before 
(Wellmer and Becker-Platen 2001, 2002).  
 
Also the availability of the resources in Level 3 which from the geological point of view 
are available in unlimited amounts in the earth’s crust, but for which limitations result 
from man-made causes such as from competing land claims, has been dealt with in the 
same articles.  
 
This present article therefore focuses on the raw materials in Level 2 which are derived 
from mineral deposits formed by geological enrichment processes.  
 
2. Statistical data 
 
The world’s population annually consumes (or uses) about 32 billion tonnes of mineral 
resources (not including water) valued at about $1,213 billion in 2003 (Wellmer et al. 
2003). The word “use” is applied here because some natural resources, including most 
metals, are recyclable, and in this sense are not consumed.  
 
The quantities of the resources (in weight units) are shown in a pyramid form in Figure 
2 indicating the level of hierarchy of natural resources to which they belong. An 
equivalent pyramid can be established in terms of value in 2003 Euros (Wellmer and 
Becker-Platen 2001, Wellmer et al. 2003).  
 
For this article, reference was made to the 2003 price level, avoiding the period of high 
price volatility of recent years. The wide base of the pyramid in Figure 2 is based on 
weight and is made up of bulk construction materials, sand and gravel, as well as 
crushed rock (Level 3 commodities).  
 
Just above these are the fossil fuels: coal, oil and natural gas (Level 1 commodities). 
The same two groups of resources would be situated at the bottom of the value pyramid, 
but in a reverse order. 
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Figure 2. The 2002 raw materials pyramid based on weight – annual consumption in 
1,000 t, natural gas in million m³ (datasource: BGR – databank). 

 
Of the Level 2 commodities non-metallic mineral resources make up most of the bottom 
half of the pyramid by weight in Figure 2. The metals lie mostly in the upper half. Most 
of the 93 naturally occurring elements are metals. Of these metallic elements, most are 
not of significant economic importance as metals, but rather are important in their non-
metallic form: examples include the elements potassium, sodium, and calcium, which 
are of great importance as salt (NaCl), potash [KCl or KCl·MgCl2·6H2O], and limestone 
(CaCO3). Only nine metals are consumed in quantities of more than one million tonnes 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

ENVIRONMENTAL AND ENGINEERING GEOLOGY - Vol. III - Global Mineral Resources, Occurrence and Distribution - M. 
Wagner and F. W. Wellmer 

©Encyclopedia of Life Support Systems (EOLSS) 

annually and include: iron (the most important metal by far), aluminum, copper, 
manganese, zinc, chromium, lead, titanium, and, since 1999, nickel. Iron and iron ore lie 
just above the construction materials and fossil fuels in the weight pyramid (Figure 2) 
with only gold in between them in the value pyramid (Wellmer et al. 2003). The 3,000 
tonnes of gold (the metal with nearly the smallest amount produced annually) is of 
greater value than the 600 million tonnes of iron ore (the metal with the largest annual 
production). The noble metals and precious stones— resources produced in the smallest 
quantity—make up the top of the weight pyramid (Figure 2). Lately, another group of 
raw materials, the so-called electronic metals, are being added to the list. As these 
materials are at present indispensable in the high tech end of the industrial process, one 
may argue that they govern all material flows of mineral raw materials of the pyramid 
below, basically all minerals that are produced and consumed (Figure 3). 

 

 
 

Figure 3. The electronic metals form the top of the raw materials pyramid, reference 
year 2002 – annual consumption in t (datasource: BGR – databank). 

 
The following generalizations may be made about the patterns reflected by the mineral 
pyramids: The resources at the base of the pyramids provide for our basic needs, e.g. 
construction materials for our homes and infrastructure; and fuels for heating and 
transportation. The resources at the top of the pyramid, the so-called electronic metals 
and the noble metals, are needed in applications to make our resource utilization more 
efficient, particularly in the case of energy resources with the help of electronic control 
devices. 
 
3. Characteristics of a mineral deposit 
 
All elements are present in the earth’s crust, most of them occur in parts per million 
(ppm, or grams per tonne) range; some, like iron or aluminum, in the range of percent. 
This, however, does not mean that they are available in unlimited amounts, because 
exploiting these metals at such low concentrations would entail prohibitive costs. 
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If one produces manufactured goods like automobiles, bicycles, or textiles and one 
operates in an area with the same legal, social, and economic framework the 
profitability of one’s operation in comparison to the competitors mainly depends upon 
its creativity and management skills. This is not so in the natural resources economics: 
The economic viability and profitability is controlled by the natural geologic processes 
that result in the desired level of concentration or enrichment of the sought-after 
commodity. Economic theory suggests that a mineral deposit with the lowest 
concentration, that must be mined to meet the last increment of demand in a market 
economy, is also the last marginal deposit (Radetzki, 1990).  
 
A mineral deposit is a body of naturally occurring geologic material, from which by 
concentration, enrichment or other processes, a commodity can be mined profitably, 
qualifying it to be categorized as reserve (United Nations, 1997). Resource, on the other 
hand, represents minerals with an inadequate concentration that render them 
uneconomic at the time of evaluation. Since technologies change over time, mining 
economics also change. Therefore, “deposit” is not an absolute term; it is rather a 
dynamic term. A deposit which was profitably mined in the past may become 
uneconomic today and could merely constitute a resource. The same holds true the other 
way around. Resources of today may become reserves of tomorrow. The following 
examples illustrate each case: 
 
1. In 1960, 50% of the iron ore needed for the German steel industry was produced 

domestically, or in adjacent countries like France. At that time more than 70 iron ore 
mines, with an average grade of some 30% Fe, were operating in Germany. Today 
Germany has none and imports all iron ore it needs. The imported iron ore is of high 
grade containing above 60 % Fe. One of the largest German iron ore mines, the 
Konrad mine, about 80 km east of Hanover, operated from April 1965 to October 
1976. Today the abandoned mine is being considered for a low- and medium-level 
radioactive waste repository. Although one of the two hoisting shafts of the Konrad 
mine stands next to a blast furnace of the Salzgitter steel works, the material (former 
“iron ore”) being excavated for the underground waste storage facility, is not 
considered an ore of iron any longer.  In fact, what was once an economic 
commodity is now a waste material that is being transported 10 km southwest of the 
Konrad mine site for disposal as a backfill material in an old mine.  

 
2. Formerly, very fine-grained lead-zinc ores, typical in some sedimentary and 

volcanogenic deposits, could not be exploited economically because beneficiation 
techniques at that time did not allow separating the lead and zinc minerals-galena 
and sphalerite. Then in the 1950s the Imperial Smelting process was developed to 
treat combined lead-zinc concentrates. Hence, it became unnecessary to separate the 
lead and zinc minerals by ore dressing. Instead, the two metals could be separated 
during this innovative smelting process. Suddenly, these fine-grained lead-zinc 
deposits became economic: Resource turned into reserve. Examples are the 
sedimentary Anvil lead-zinc deposit in the Yukon Territory, Canada, and the 
McArthur River mine in the Northern Territory of Australia. Also, because the 
Imperial Smelting process is not affected by higher mercury impurities than other 
processes, it resulted in and thereby made the Song Tho lead-zinc deposits in 
Thailand to be of economic value instantly. 
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