CLASSIFICATION AND DISTRIBUTION OF FOREST BY GEOGRAPHY

Cinnirella S.
Researcher, Italian National Research Council (CNR), Rende, Italy

Keywords: classification, distribution, forest, remote sensing, actual forests

Contents

1. Introduction
2. Classic Methods of Classification
 2.1. Phytoclimatic Approach
 2.2. Physiognomic Approach
 2.3. Floristic Approach
 2.4. Ecosystemic Approach
3. Classification by Remote Sensing
 3.1. Basic Principles
 3.2. Sensors
 3.3. Image Classification
 3.4. Application of Remote Sensing
4. Classification and Distribution of Actual Forests
 4.1. Temperate and Boreal Forest
 4.1.1. Evergreen Needleleaf Forest
 4.1.2. Deciduous Needleleaf Forest
 4.1.3. Mixed Broadleaf/Needleleaf Forest
 4.1.4. Broadleaf Evergreen Forest
 4.1.5. Deciduous Broadleaf Forest
 4.1.6. Freshwater Swamp Forest
 4.1.7. Sclerophyllous Dry Forest
 4.2. Tropical Forest
 4.2.1. Lowland Evergreen Broadleaf Rain Forest
 4.2.2. Lower Montane Forest
 4.2.3. Upper Montane Forest
 4.2.4. Freshwater Swamp Forest
 4.2.5. Semi-evergreen Moist Broadleaf Forest
 4.2.6. Mixed Broadleaf/Needleleaf Forest
 4.2.7. Needleleaf Forest
 4.2.8. Mangroves
 4.2.9. Deciduous/Semi-deciduous Broadleaf Forest
 4.2.10. Sclerophyllous Dry Forest
 4.2.11. Thorn Forest
 4.3. Other Categories of Forests
 4.3.1. Sparse Trees and Parkland
 4.3.2. Exotic and Native Species Plantation
 4.3.3. Disturbed Natural Forest
5. Perspective and Guidelines
Acknowledgements
The development of the main systems of vegetation classification based mainly on climatic factors is described and physiognomic, floristic and ecosystemic approaches are highlighted.

The excursus ranges from the former idea of classification defined by a historical perspective to the recent synthetic expressions that represent and predict real and potential vegetation.

Next, the classification of vegetation is described by means of climograms, which are synthetic expressions of the effect of climate on forests.

New techniques of classification based on remote sensing are briefly discussed. Detection of vegetation with optical and radar sensors and the subsequent supervised or unsupervised human classification is analyzed.

Main forest ecosystems classification is reported finally and forests’ distribution on the Earth regions (Africa, Asia, Europe, North and South America, Oceania) is illustrated.

1. Introduction

The growing demand from the public and the scientific community concerning the environment and particularly forests needs a response on the quantity and quality of forest ecosystems.

According to the FAO, in the year 2001 (FAO 2001a) the world's forests cover 3 870 million hectares with an observed negative trend in the last two centuries. The balance between the annual rate of deforestation (14.6 million hectares) and forest increase (5.2 million hectare) is mainly attributable to tropical a non-tropical forest erasing.

The growth of forested areas depends on the restoration of forests, because of afforestation, reforestation and on natural regeneration and abandoned agricultural land. While the negative variation depends on conversion of forest to agricultural land, forest degradation due to overharvesting, overgrazing, fires, insect pests and diseases, storms, wind damages and air pollution.

Improvement of forest management and enlargement of forests (see Plantations (section 5-03-01-05)) will potentially reduce the negative trend of the forest surface and provide many goods and services to human life. Forest services such as soil and water conservation, conservation of biological diversity, improvement of human living conditions through recreation and employment opportunities, and protection of natural and cultural heritage are accepted and sustained worldwide.
Moreover the concentration of Greenhouse Gases that are responsible for rapid climate changes can be stabilized by reducing the deforestation rate, increasing afforestation and reforestation, increasing productivity and agroforestry practices.

Given the acute information deficit on the quality of forest ecosystems a better knowledge is needed and the achievement of forest monitoring, assessing and mapping is required to observe evolution in quantity and quality.

Furthermore, detailed indications on climate-vegetation links will help forest administrators to manage and orientate simple and complex forest systems.

In the 19th century, the increase of knowledge supported by experimental observation and a series of explorations and voyages of discovery began the field of causal phytogeography, establishing the relation between plants and their distribution.

Differences in environmental conditions under which each plant community lives became useful in defining the boundaries of the vegetation distribution. Moreover different plants with similar characteristics living in different environments were observed to have a similar physiognomy. Understanding the causes and geographic pattern of climate allows us to predict patterns of ecosystem distribution.

The development of climate-vegetation static models was then founded on the assumption that climate and vegetation were in equilibrium with each other (broadly speaking each climate reflect a vegetation type); although the axiom is valid for long time-scales and on a regional spatial scale, it is unsuitable for large-scale biomes where other factors affect the relationship (for example, soil, geomorphology, etc.).

The perception that vegetation represents a description of the climate has led to a systematic definition of the climate-vegetation relationship developed in phytoclimatology thus the following chapters analyze the main classic methods of vegetation classification that depend on climate parameters, physiognomy of forest, floristic composition and on the ecosystem structure.

The usefulness of this overview consists of the examination of the evolutionary stage through which forest ecology has passed and forest classification has developed. Furthermore this synthetic review helps scientists and those individuals interested in forest classification research or other applied studies to find adequate systems for their own work. Although the collection is not complete and additional indices could be described and added to each category, the selected and described indices are useful to cover the development of forest classification and document the derivation of actual classification systems.

The history of forest or vegetation classification is made of attempts to condense in a few classes the description of the multiform evidence of the forests. On the basis of their common attributes (climate, vegetation, soil) a set of simple units are merged to obtain groups, assuming that plant communities have discrete boundaries and discontinuous composition.
In forest classification, the unit is typically the homogeneous stand with respect to species composition, structure and function and on the basis of the final objective (management, research, pleasure, protection) the classification process requires a collection of data ranging from climatic factors to soils and plants.

2. Classic Methods of Classification

Nowadays it is widely accepted that the establishment, evolution, differentiation and distribution of vegetation depends on the interaction of climatic, biotic, edaphic and historical factors.

Commonly, climate and soil are considered as the main driving forces of vegetation distribution at regional level. Thus broadly speaking, by superimposing climate classifications (see Environmental Structure and Function: Climate System) upon plant communities a macro subdivision of vegetation can be obtained.

This idea was not clear until the 19th century when differences in plant communities were defined only by a historical perspective; but the difficulty in establishing a correspondence between climate and vegetation urged scientists to define a correspondence of these terms.

Since the beginning of the 1900s some indices were used to explore and classify both climate and vegetation and their relations.

The climate of a region was modeled and represented by synthetic expressions and each expression attempts to represent the complex variability of regional weather. Integration of climatic classification with vegetation classification leads to phytoclimatic classification. Differences between climatic classification and phytoclimatic classification depend on the logical process.

The deductive process might be used to classify a region from a climatic point of view (a distribution of physical limits can be established after their definition) while the inductive process might be used to define a region by a vegetative point of view (the classification of a region can be formulated by observing the climate and the vegetation distribution).

Within the classic methods of classification based on direct or indirect observation, four approaches can be defined for a simpler understanding, and information supplied provides a detailed summary of the index's relevance, importance and derivation.

Subdivision of classification systems in phytoclimatic, physiognomic, floristic and ecosystemic approaches can be used while some of the differences depend on the scale. Each classification and method represents a framework of the ecosystem and can be used to determine actual vegetation or predict the habitat value for most species that could potentially occur in a region.
TO ACCESS ALL THE 65 PAGES OF THIS CHAPTER,
Visit: http://www.eolss.net/Eolss-sampleAllChapter.aspx

Bibliography

Allue Andrade J.L. (1966). Subregiones fitoclimáticas de España. Madrid, Spain: Instituto Forestal de Investigaciones y Experiencias. [In Spanish. This is the early work of the Author in which are reported phytoclimatic regions of Spain].

Ångström A.J. (1926). Praktisk meteorologi. En inledning till väderleksförutsägelsernas teori och praktik, 144 pp. Klotbd m skomsl. [In Swedish. This book on meteorology with theoretical and practical exercises report the complex index which include both temperature and precipitation factors].

Bagnouls F., Gaussen H. (1957). Les climats biologiques et leur classification. Annales de Géographie 2, 193-220. [In French. Subdivision of World climate was done on the basis of observation of main climatic parameters].

Bailey R.G. (1980). Descriptions of the ecoregions of the United States. Miscellaneous Publication 1391, 77 pp. Washington, DC, USA: U.S.D.A. U.S.F.S. [This early work was used by the Forest Service of United State to classify terrestrial resources. The Author emphasized climate as a controlling factor at all spatial scales, with landform modifying climatic influences as reflected by vegetation at finer spatial scales].

Boyko H. (1947). On the role of plants as quantitative climate indicators and the geoeccological law of distribution. Journal of Ecology 35(1-2), 138-157. [The geoeccological law of distribution takes into account the edapho-climatic compensation: the micro-distribution (topographic) of a species or association of plants is a parallel function of the macro-distribution (geographic) and both are determined by the same ecological amplitude].
Braun E.L. (1947). Development of the deciduous forests of eastern North America. Ecological Monographs 17, 211-219. [Broad-scale deciduous forests of the United States are identified and described by major dominants].

Braun E.L. (1950). Deciduous Forests of Eastern North America, 596 pp. Philadelphia, USA: The Blakiston Company. [Vegetation regions representing homogeneous physiognomic units are described and retained to be the climatic climax types].

Braun-Blanquet J. (1921). Prinzipien einer Systematik der Pflanzengesellschaften auf floristischer Grundlage. Jahrbuch der St. Gallener Naturwissenschaftlichen Gesellschaft 57, 305-351. [The principles and systematic of plant societies at floristic level was early described in this work].

Braun-Blanquet J. (1928). Pflanzensociologie, 885 pp. Wien, Austria: Springer-Verlag. [The new concept of plants living in communities was introduced. The work began the School of Phytosociology of Zurich-Montpellier].

Budyko M. I. (1974). Climate and Life, 508 pp. New York, USA: Academic Press. [In this book major past climate changes and the extinction of animal species were related; also plant-climate relation is reported].

Candolle A.L.P.P. de (1855). Géographie Botanique Raisonnée; Ou, Exposition des Faits Principaux et des Lois Concernant la Distribution Géographique des Plantes de l’Epoque Actuelle. Paris, France: Masson. [de Candolle was a biogeographer and ecologist that have long recognized the relationship between plant distribution and climate].

Clements F.E. (1916). Plant succession: An Analysis of the Development of Vegetation, Publ. 242, 512 pp. Washington, DC, USA: Carnegie Institute of Washington. [Clements modelled his ideas on those of Linnaeus and developed a system of classifying plants and animals by their relationships with each other].

Cure P. (1945). Carte synthétique des climats de l’Europe. Carte synthétique des climats de l’Australie, Vol 1, 111 pp. [In French. The main purpose of this work was to prepare maps for agricultural production].

De Martonne E. (1926). Une nouvelle fonction climatologique: l’indice d’aridité. La Météorologie 1, 449-459. [The earlier formulation of the aridity index].

De Philippis A. (1937). Classificazioni ed indici del clima, in rapporto alla vegetazione forestale italiana. *Nuovo Giornale Botanico XLIV*, 165 pp. [In Italian. The paper draw a picture on several indices and delineate the forest vegetation zones in Italy].

Dokuchaev V.V. (1898) A bridged historical account and critical examination of the principal soil classifications existing. *Transactions of the Petersburg Society of Naturalists* 1: 64-67. [The paper was printed in 1898 in a Russian journal, but recently it has been made available to a wider scientific audience in Dokuchaev (1951), Selected works, 381 pp. Moscow: Akademia Nauk. The idea that soil-vegetation-climate is a complex system is here reported].

Drude O. (1902). *Der hercynische Florenbezirk*. Leipzig, Germany. [A further development of physiognomic categories is described in this paper. Cited in De Philippis (1951)].

Enquist F. (1929). Studier över samtidiga växlingar i Klimat och växtlighet. *Svensk Geografisk Årsbok* 5, 7-50. [These studies on contemporary changes in climate and plants highlight the effect of thermic range on vegetation. Cited in De Philippis (1937)].

Flahault C. (1901). A project for phytogeographic nomenclature. *Bulletin Torrey Botanical Club* 28, 391-409. [As other earlier works this was developed by Braun-Blanquet to construct the phytosociology].
Gams (1923). Die Waldklimate der Schweizeralpen, ihre Darstellung und ihre Geschichte. *Verh. Naturforschenden Gesellschaft Basel* 5, 153-214. [In German. This paper on the forest climates of the Swiss Alps and their representation and history include the defined index. Cited in De Philippis (1937)].

Hettner A. (1911). Die Klimate der Erde. *Geogr. Zeitschr.* 17. [This paper provide a a climate classification with a particular focus on link with vegetation. Cited in De Philippis (1937)].

Holdridge, L.R. (1947). Determination of world plant formations from simple climatic data. *Science* 105: 367-368. [Life zone classification are defined by three climatic parameters: biotemperature, mean annual precipitation, and potential evapotranspiration (PET) ratio].

Holman J.O., Bartlein P.J. (2000). Spatial interpolation of categorical Data: An application for mapping global vegetation data. http://geography.uoregon.edu/department/grad/recent/ [The paper describe a technique for spatial interpolating categorical data of vegetation. The Euclidean interpolation is used for this purpose].

classification systems: implications for biodiversity conservation. *Ciência e Cultura* **51**(5/6), 331-348. [In this paper a summary of the evolution of the phytogeographic classification systems of Brazil is reported and the Martius's curious floristic domains is described].

Lang R. (1915). Versuch einer exakten Klassifikation der Böden in Klimatischer und geologischer hinsicht. *Internert Mitteil. Für Bodenkunde* **5**, 312 pp. [In German. This is an attempt to produce an accurate classification by a climatic and geologic point of view].

Mayr H. (1906). *Fremdländische Wald und Parkbäume für Europa*. Berlin, Germany. [Book on park trees and introduced species with afforestation which try a simple classification centred on typical species of each climatic belt].

Mayr H. (1909). *Waldbau auf naturgesetzlicher Grundlage*. Berlin, Germany: Parey. [The zonal classification was constructed by taking into account the temperature boundaries. A nature-legal basis support principia of afforestation and reforestation].

Merriam C.H. (1898). *Life zones and crop zones of the United States*. Bull. 10, USDA Biol. Surv. [This was the first classification in United States and was based on summation of temperature over a certain value].
Meyer A. (1925). Ueber einige Zusammenhänge zwischen Klima und Boden in Europa. Chemie der Erde II, 209-347. [About some connections between climate and terrain morphology in Europe are here reported; furthermore the pluviometric factor is described].

Mitrakos K. (1980). A theory for Mediterranean plant life. Acta Oecologica/Oecologia Plantarum 1, 245-252. [The stress index is reported at Mediterranean level and is used to detect the natural distribution of a species].

Moss C.E. (1913). Vegetation of the Peak District. Cambridge, Great Britain: University Press. [The polyclimax theory was here developed and suppose that there may be a number of different climax communities within a climatic region. Each climax unit can be in dynamic equilibrium with the local habitats and their controlling environmental factors].

Nichols G.E. (1929). Plant association and their classification. Proc. Int. Cong. Plant Science, 629-641. Ithaca, NY, USA. [A hierarchial ecological classification which follow the climax pattern theory of polyclimaxes is defined and large-scale units as the climatic-climax association-type or association-complex that appeared to coincide with the formation-type (biome-type) are used].

Olson J.S. (1994). Global Ecosystem Framework: Definitions. Internal Report, 37 pp. Sioux Falls, SD: USGS EROS Data Center. [The Author represents the world's Major Ecosystem Complexes ranked by the amounts of carbon in live vegetation. A subsequent data set was compiled Olson, Watts and Allison at the Oak Ridge National Laboratory. The data set has a one-half degree latitude/longitude spatial resolution and a total of 44 land ecosystem classes].

Pavari A. (1916). Studio preliminare sulla coltura di specie forestali esotiche in Italia. Annali Reale Istituto Superiore Forestale Nazionale I. [In Italian. The work of Mayr (1906) was integrated with this study on introduction of new species and lead to a classification system based on the typical tree of a climatic belt].

Quervain (1903). Die Hebung der atmosphärischen Isothermen in der Schweizer Alpen und ihre Beziehung zu den Höhengrenzen. Beiträge zur Geophysik IV, 481. [The study of the atmospheric isotherms along a mountain profile (Swiss Alps) was used to define the relationship between vegetation and temperature].

Quezel P. (1976). Forêts et maquis méditerranéens: écologie, conservation et aménagements. Technical Notes Man And Biosphere 2, 9-33. Paris, France: UNESCO [The natural range of distribution of a species was used to construct a diagram which is functionally connected with the climate].

Raunkiaer C.C. (1934). The life-forms of plants and statistical plant geography. London, Great Britain: Oxford Univ., Clarendon Press. [The ecological system of classifying plants was based on the position of the wintering buds. Both the geographic and phenologic aspect were comprised].

Rivas Martinez (1995). Bioclimatic Classification System of the World. Folia Botanica Matritensis 16, 1-29. [A very complex but useful system of classification that use climatic data both observed and calculated].
Rosenkranz F. (1936). Klimacharakter und Pflanzendecke. Oesterreichische Botanische Zeitschrift 85, 183-212. [The paper define a complex index that is constructed by two climatic parameters: temperature and precipitation].

Rübel E. (1912). Oekologische Pflanzengeographie. Jena. [This book on ecology and geography of plants include a classification system based on physiognomy of plants populations].

Rubner K. (1935). Das natürliche Waldbild Europas. Zeitschrift für Weltforstwirtschaf 11, 68-155. [On this paper the Author use the numbers of days with a certain value of mean temperature as boundary between oceanic or continental climate].

Running S.W., Loveland T.R., Pierce L.L. (1994). A Vegetation Classification Logic Based on Remote Sensing for Use in Global Biogeochemical Models. Ambio 23(11), 77-81 [New methods of classification increase day by day our knowledge on ecosystems. A wide variety of sensors and software are commonly available at our purpose].

Samuelsson G. (1915). Studier öfver vegetationen i Dalarn. I. Några lafvar från Dalarn. Svensk Bot. Tidskr. 9: 362-366. [Vegetation belts were studied and defined by a thermic point of view which was simple but inadequate to describe the real relationship climate-vegetation].

Schimper A.F.W. (1898). Pflanzengeographie auf physiologischer Grundlage. Jena, Germany. [A rigorous relation between climate and plant distribution is defined by taking into account physiological processes. Temperature (through frost frequencies and heat sum) in particular was recognized for having a strong influence on plant distribution].

Schröter C. (1926). Das Pflanzenleben der Alpen, 1288 pp. Zürich, Swiss: Albert Ramstein. [This study on Alps vegetation was used by Braun-Blanquet to systematize the phytosociology concept].

Soulavie (Giraud) J.L. (1780). Histoire naturelle de la France Méridionale. Nîmes, France. [This ancient reference was reported by De Philippis (1937)].

Sukachev V. (1958). Über einige Grundbegriffe in der Phytosozologie. Berliner Deutsch. Botanik Gesellschaft 47. [Some fundamental ideas in phytosociology are reported and the biogeocoenosis concept further developed].

Szynkiewicz D. (1923). Sur l’importance du déficit hygrométrique pur la phytogéographie écologique. Acta Societatis Botanicorum Poloniae 1. [The equilibrium between precipitations and evaporation is here expressed as limiting term to vegetation distribution, but the evaporation is unclear in its definition].

Tansley A.G. (1939). The British Islands and their vegetation. Cambridge, Great Britain: Cambridge University Press. [Description of vegetation is proposed considering the unique complex: soil-vegetation-atmosphere].

The Nature Conservancy (1994). The Conservation of Biological Diversity in the Great Lakes Ecosystem: Issues and Opportunities. http://www.epa.gov/glnpo/ecopage/issues.html [In this paper, significant biodiversity elements of the Great Lakes are identified, threats to those resources are described and evaluated].

Transeau E.N. (1905). Forest centres of E. America. *American Naturalist* **39**, 875-89 [In these studies climate centres and vegetation centres were correlated to point out major forest systems].

UNEP-WCMC (2000). *Forests and Drylands Programme*. http://www.unep-wcmc.org/ [These web pages provide information and datasets on forest distributions at national levels].

Wahlenberg G. (1811). *De Vegetatione et Climate in Helvetia Septentrionali inter flumina Rhenum et Arolam observatis et cum summi septentrionis comparatis tentamen*, 200 pp. Turici Helvetorum. [It gives an account of the plant, their designations, the tree limits, and the lower and upper limits of the various plants].

Walter H., Lieth P. (1960-1967). *Klimadiagramm Weltatlas*. Stuttgart, Germany: Gustav Fischer Verlag. [Climate diagrams are brief summaries of climatic variables and their seasonal variation. They were originally developed for vegetation studies but nowadays they have usefulness for a wide range of sciences].

Warming E. (1895). *Plantesamfund*. Kjöbenhavn, Denmark. [The English version was published as Oecology of plants, Oxford (1909)]. In this pioneering text on plant ecology this term is defined as the study of "the manifold and complex relations subsisting between the plants and animals that form one community].

Wölkoff A. (1887). *Die Klimate des Erdhalles*. Jena, Germany. [These are extensive studies on meteorology with climate classifications].

Biographical Sketch

Sergio Cinnirella was born in Asmara (Eritrea) in 1961 and is married to Lorenza. They have three sons: Alessandro, Stefano and Davide. Sergio obtain the Laurea degree in Forestry Science at the University of Bari. After fellowships at the Italian National Research Council (CNR) became researcher in Forest Ecology. Main research topics concern water relation of plants, vegetation monitoring through satellite sensors, effect of vegetation on soil erosion. Since 1995 is Project Manager and had short time teachings on forest ecology. He is member of the Italian Society of Forest Ecology and Silviculture. Sergio is author or coauthor of more than 40 scientific papers that cover studies on climate changes and forests; soil cover and hydrological balance; remote sensing of forest cover.