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Summary 
 
The aquatic environment harbors many microorganisms such as viruses, bacteria, fungi 
and protozoa. In addition, many survive in their intestines and enter into their body 
through intake of food or water. These intestinal or environment microorganisms are 
trying to invade the fish body, but their invasion and proliferation are prevented by the 
bio-defense mechanisms in a healthy fish. The first line of defense is non-specific innate 
immune system which is important especially in fish as a lower vertebrate. The humoral 
and cellular factors involved in the innate immune system in fish are introduced in 
Section 1.  
 
Microorganisms escaped from the first barrier come across with the second line of 
defense, adaptive immune system characterized by the specificity and memory. Teleosts 
and elasmobranchs possess adaptive immunity akin to mammalian one having Igs, 
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MHC/ TCR system and B cells, T cells. Humoral and cellular components involved in 
adaptive immune system are described in Section 2 together with different 
characteristics of fish immune system compared to those of mammals.  
 
Shrimp aquaculture is expanding all over the world and the importance of understanding 
their immune system is greatly increasing to protect from infections. However, little is 
known about the innate immune systems possessed by shrimp particularly the 
mechanisms involved at the molecular level. Current knowledge on immune responses 
of shrimp focusing on the phenol oxidase system, antimicrobial peptides/proteins and 
blood clotting system is presented in Section 3.  
 
Shellfish production is also growing worldwide. Shellfish, as well as other invertebrates, 
do not possess adaptive immunity and rely on an innate immune system. Cellular and 
humoral bio-defense in shellfish are described in section 4 focusing on hemocytes which 
migrate to and phagocytose invading microorganisms and humoral defense factors 
involved in the recognition of pathogenic microorganisms and the microbial killing and 
macromolecular degradation. 
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2. Adaptive Immunity in Fish 
3. Shrimp Bio-Defense 
4. Shellfish Bio-Defense 
Bibliography 
Glossary 
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1. INNATE IMMUNITY IN FISH 
Takashi Aoki and Jun-ichi Hikima 
 
1.1. Synopsis 
 
The aquatic environment where fish live harbors many microorganisms such as bacteria, 
fungi and protozoa. In addition, many survive in their intestines that enter their body 
through intake of food or water. These intestinal or environment microorganisms are 
trying to break into the fish body continuously, but their invasion and proliferation are 
prevented by the bio-defense mechanisms in a healthy fish. It is considered that non-
specific innate immune system is important especially in fish as a lower vertebrate.  
 
The innate immune system involves both humoral and cellular mechanisms and can be 
divided into four phases: 1) first, is protection effected by the barrier of mucus on the 
body surface, gills and in intestine; 2) then the pathogen that made its way into the host 
is phagocytosed by immune-related leukocytes (antigen presenting cells or APC); 3) 
pathogens are recognized by various receptors and then bio-defense systems it started; 4) 
finally, cellular defense mechanism activates acquired immunity as a specific immune 
mechanism.  
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Furthermore, various immune factors exist in each bio-defense system and it prevents 
diseases by inhibiting the growth of invading microorganisms by biological and 
physiological activities possessed by these factors. In this sub-section, the humoral and 
cellular innate immune systems in fish will be introduced. 
 
1.2. First Barrier in Fish, Mucosal Environments 
 
The main form of fish mucus is a mucopolysaccharide and is secreted from mucus cells 
distributed in the epithelium. The primary role of mucus is to reduce the resistance of 
water, flush foreign substances that adhered to the body surface and minimize the 
physical contact injury, but the latter two roles themselves act as a bio-defense. Aside 
from the mucus secreted on the body surface, various bio-reactive substances that is 
useful for bio-defense are also secreted in the mucus. These bio-reactive substances 
include complement, lectin, lysozyme, C-reactive protein (CRP), proteases and the 
various antimicrobial peptides; recently, antibody (immunoglobulin) is also included as a 
bio-reactive compound (Ellis, 2001; Molle et al, 2008).  
 
It is considered that bacterial flora in the intestinal tract of fish enhances the bio-defense. 
Recently, protective effect for fish pathogenic bacteria has been reported using a useful 
bacterial species isolated from the intestinal flora of mammals by fixing this in the gut of 
the target fish (Nayak, 2010). This technique is referred to as probiotics. 
 
1.3. Humoral Factors in Fish Innate Immunity 
 
1.3.1. Complement System 
 
The complement plays an important role in host defense. It is a molecule that activates 
the function of antigen-antibody complex and reacts nonspecifically to bacterial cell wall 
components. Furthermore, complement is important to enhance the activity of immune-
related leukocytes since the various activities of the leukocytes occur after activation of 
complement. 
 
There are nine main components of the complement: C1 to C9, but the complement 
system involves more than 30 protein molecules including factor B, factor D etc., factor 
involved in the inhibition of the activation (C4b binding protein, factor I, factor H etc.), 
and complement-related factors present on the cell surface (CR1, CR3 which is on the 
phagocytic cell surface) (Nonaka and Smith, 2000). In teleosts, the main components C1 
to C9 have already been isolated and characterized (Nonaka and Kimura, 2006). The 
molecular weight of factor B and D in carps have also been determined (Nonaka and 
Kimura, 2006). It is considered that C1 to C9 might also exist in rainbow trout since C3 
and C5 has been isolated and membrane-attack complex (MAC), which consists of C5 
and C9 has also been observed (Yano, 1995). 
 
The activation pathways of complement include three pathways: classical (first route) 
that is well known, alternative (second route), and the lectin pathway the third route, 
which has recently been revealed. Activation of complement is a cascade reaction; one 
component is activated to act as an enzyme that decomposes and activates the other 
components (Nonaka and Smith, 2000; Nakao et al, 2011). 
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In the classical pathway, C1 is activated by antigen-antibody complexes. C1 is composed 
from three fragments, C1q, C1r, and C1s; C1s eventually becomes the trypsin-type 
protease. C4 is decomposed into C4a and C4b by the activated C1. C2 binds to C4b that 
binds to the target cells and becomes C4b2a by activation of C1. C4b2a is a C3 convert 
enzyme which decomposes C3 into C3b and C3a; C3b binds to C4b2a to form a 
C3b4b2a. C3b4b2a is a C5 convert enzyme which decomposes C5 into C5a and C5b, 
C5b binds to the lipid membrane of the target cell. Film invasive complex (MAC 
Membrane-attack complex) is formed by reaction of the molecular assembly of C6, C7, 
C8 and C9 sequentially with C5b as core. The C3a, C4a and C5a which are derived from 
this series of pathway are called anaphylatoxin.  
 
C3 is slightly hydrolyzed to C3a and C3b, factor B binds to the C3b (C3bB) and C3bBb 
is formed with factor D. This C3bBb is a C3 convert enzyme and decompose C3 into 
C3a and C3b. These reactions are always occurring in body fluids and C3b activity is 
unstable in solution. However, C3b maintains the activity when it binds to the target 
foreign substance and binds with factor B to form C3bBb on the surface of a foreign 
substance by the effect of factor D. This reaction is the beginning of the alternative 
pathway activation and many target foreign substances such as LPS of Gram-negative 
bacteria, inulin, zymosan, trypsin, cobra venom, and rabbit red blood cells are known 
activation substances. C3bBb on the surface of foreign substance is a C3 convert 
enzyme, it binds to properdin to be a stable C3 convert enzyme and focus on degradation 
of C3. The newly formed C3b binds to C3bBb on the surface of foreign substance and 
forms C3bnBb (“n” indicates that C3b has multiple attachment) on target cells. This 
C3bnBb has a C5 convertase activity; it forms the MAC in the same way as the classical 
pathway after this reaction. 
 
Recently, the details of the lectin pathway have been clarified; complement is activated 
by recognizing and binding of mannose-binding lectin (MBL) to the mannose on the 
target cell. MBL-associated serine protease (MASP)-1 and -2 are bound to this MBL, 
this complex plays the same role as C1 in the classical pathway and the subsequent 
activation is the same as the classical pathway. 
 
For the lectin pathway in fish, MBL (Gercken and Renwrantz, 1994) and MASP (Endo 
et al, 1998) are found and it is believed that the lectin pathways also exist. However, 
since potential C2 and factor B are the same molecule in fish as described above, the 
lectin pathway of fish is possibly the same as the alternative route (Nonaka and Smith, 
2000; Nakao et al, 2011). 
 
Some activated fragments of complement component bind to a target cell of foreign 
substances and react as opsonins. Opsonin is a general term for serum factors that induce 
phagocytosis by phagocytic cells by binding to the surface of the phagocytic particles of 
bacteria and foreign substances; phagocytic cells have a receptor on cell surface for the 
opsonins. C4b, C3b, iC3b (inactivated C3b on the cells of foreign substance by C3b 
inactivator), and C3d (a fragment that can be C3b is decomposed further) have the 
opsonic activity in complement component fragment. Opsonic activity of C4b is not so 
strong and main opsonization of complement is by C3. Many studies have reported that 
normal serum (complement) of fish shows opsonization (Moritomo et al, 1988; 
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Matsuyama et al, 1992; Jenkins and Ourth, 1993). Further, it has also been reported that 
the phagocytic cells of fish express opsonic receptors (Matsuyama et al, 1992).  
 
1.3.2. Lysozyme 
 
Lysozyme is an enzyme that hydrolyzes β1→4 binding between the N-acetylmuramic 
acid and N-acetyl glucosamine present in the bacterial cell wall and prevents bacterial 
infection in many organs (Jollès and Jollès, 1984; Callewaert and Michiels, 2010). In 
general, lysozyme shows a direct effect against the peptidoglycan layer of Gram-positive 
bacteria, and it is effective against Gram-negative bacteria only when Gram-negative 
bacteria are damaged by a complement. In fish, it has been reported that fish lysozyme 
shows bactericidal effect not only against Gram-positive but also Gram-negative 
bacteria, although it is not perfect lytic activity (Yousif et al, 1994a). As mentioned 
earlier, fish are constantly exposed to risk of many bacteria invading into its body 
through the mucus and the skin. From this situation, it is considered that fish lysozyme 
plays an important role in non-specific host defense.  
 
There are two types lysozymes in fish, chicken-type (C-type) and goose-type (G-type) 
(Hikima et al., 2002; Callewaert and Michiels, 2010). So far the C-type lysozyme have 
been identified in many fish species including Japanese flounder (Paralichthys 
olivaceus) and rainbow trout (Oncorhynchus mykiss) (Dautigny et al., 1991; Hikima et 
al, 1997, 2000; Jiménez-Cantizano et al, 2008; Fernández-Trujillo et al, 2008; Ye et al, 
2010). The G-type lysozyme waspreviously only detected in avian (Périn and Jollés, 
1976; Nakano and Graf, 1991) before fish G-type lysozyme gene was identified from 
Japanese flounder (Hikima et al, 2001). After this discovery, G-type lysozyme gene has 
been found in many fish species (Yin et al, 2003; Zheng et al, 2007; Kyomuhendo et al, 
2007; Larsen et al, 2009; Whang et al, 2011) and mammals (Irwin and Gong, 2003).  
 
Lytic activity of fish lysozyme has been detected generally in the skin mucus, serum, 
kidney (head kidney and body kidney), liver, gills, and eggs (Yano, 1996; Saurabh and 
Sahoo, 2008). Tissue expression showed the presence of the lysozyme gene in these 
tissues (Hikima et al., 2002; Callewaert and Michiels, 2010). In addition, the gene 
expressions of C- and G-type lysozymes increase in the head kidney and spleen after 
pathogenic bacterial infection (Hikima et al, 1997; Jiménez-Cantizano et al, 2008; Ye et 
al, 2010).  
 
In experiments with the Japanese flounder recombinant lysozyme (i.e., C-type and G-
type lysozymes), which were produced in insect cells, they showed only a little lytic 
activity against Edwardsiella tarda that is a pathogen of Japanese flounder. However, it 
revealed stronger lytic activity against Vibrio anguillarum and Pasteurella piscicida 
(currently Photobacterium damselae subsp. piscicida), which are not pathogens. The 
results suggested that there was some relationship between the host specificity and 
antibacterial activity of lysozyme (Hikima et al, 2001; Minagawa et al, 2001). In 
addition, since the C-type lysozyme has a lytic activity against fish bacterial pathogens 
(such as E. tarda) (Hikima et al, 2001 Minagawa et al, 2001), it has been revealed that 
lysozyme is actually important for infection by the experimental system using the 
chicken lysozyme gene transgenic zebrafish (Yazawa et al, 2006).  
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1.3.3. Transferrin  
 
Transferrin is the iron-binding protein present in the serum that chelates two irons in one 
molecule. Transferrin is involved in the capture of the absorbed iron and to carry it to 
hematopoietic tissue to construct hemoglobin. Therefore, free iron is present only in 
small amounts in the body. Iron is also essential for bacteria to live. Since free iron in the 
blood is very low because of transferrin, normal bacteria eventually die because they 
can’t absorb iron. Thus, the role of transferrin does not kill bacteria directly, but kills 
bacteria by inhibiting bacterial proliferation. It is also referred to as bacteriostatic action.  
 
Transferrin also ubiquitously exists in fish (Jamieson, 1990). The apparent toxicity of E. 
tarda and V. anguillarum increases when iron is pre-inoculated into the eel (Iida and 
Wakabayashi, 1990; Nakai et al, 1987). It is considered that the amount of free iron in 
body is increased beyond the iron-chelating ability of transferrin. Thus, the transferrin 
plays a role of nonspecific host defense. Transferrin is a multi-type phenotype and the 
relationship between the expression type and disease resistance mainly in salmonid fish 
has already been reported (Suzumoto et al, 1977; Winter et al, 1980; Withler and Evelyn, 
1990).  
 
Structures of various fish transferrin genes have been revealed (Hirono et al, 1995; Lee 
et al, 1998). It has been clarified that a transferrin molecule is composed of two regions 
having a similar structure as in mammalian transferrin. However, expression type 
described above, i.e., the relationship between genotype and disease resistance, is not 
clear. It has been shown that goldfish transferrin is involved in the activation of 
phagocytic cells by molecular and biological analysis (Stafford and Belosevic, 2003). 
Furthermore, it has also been reported that the recombinant transferrin induces nitric 
oxide production of macrophages in goldfish and mouse (Stafford et al, 2004). 
 
1.3.4. Lectin  
 
Lectin is present in most living organisms and causes agglutination by binding to the 
sugar on the cell surface. Lectin has at least two sugar binding sites and its binding 
specificity is high. In fish, lectin activity is observed in body surface mucus, blood, 
tissue, and eggs (Yano, 1996). It is suggested that lectin in eggs may have contributed to 
biological defense since it helps normal fertilization and the development of eggs 
(Krajhanzl, 1990) and it aggregates the specific bacteria (Yousif et al, 1994b). Lectin in 
the body surface (skin) also aggregates bacteria (Kamiya et al, 1988). In addition, it is 
considered that the skin lectin has some roles against bacterial infection because lectin 
shows higher activity in bacterial infection. Lectin plays an important role for the 
complement activation pathway (lectin pathway) since MBL is present in fish blood 
(Gercken and Renwrantz, 1994). Further, it is also known that human MBL shows 
opsonic activity (Matsushita and Fujita, 2001). It is suggested that fish lectin functions 
for lectin pathway and plays an important role as a typical host defense factor since the 
MBL genes have been identified from carp, goldfish, zebrafish, rainbow trout, and 
lamprey, and those shows ability to bind to the foreign substances (Vitved et al, 2000; 
Nikolakopoulou and Zarkadis, 2006; Takahashi et al, 2006).  
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Galectins are also well known as the other lectin and belong to the S-type lectin family 
that binds to β-galactoside and are involved in the cell adhesion and regulation of growth 
and differentiation. Fish galectin (gene or protein) has been isolated and identified from 
conger eel, eel, rainbow trout and zebrafish and is present in many tissues such as body 
surface, gills, kidney, and spleen (Muramoto and Kamiya, 1992; Inagawa et al, 2001; 
Tasumi et al, 2004; Vasta et al, 2004). Galectin is widely involved in the body's defense 
such as differentiation of B and T cells and macrophage activation (Vasta et al, 2004) 
however, there are many questions still left in fish. 
 
1.4. Pattern Recognition in Fish  
 
1.4.1. Toll-Like Receptors  
 
Pattern recognition receptors (PRRs) are play key roles in the innate immune system of 
animals including teleost fish, in the recognition of pathogen-associated molecular 
patterns (PAMPs) derived from invading pathogenic microorganisms. Whereas PRRs-
recognizing PAMPs are very diverse, there are no such varied molecules recognized by 
T-cell receptor and immunoglobulin in the acquired immunity. The PAMPs include 
bacterial components (lipoprotein, lipopolysaccharide, peptidoglycan, flagellin, etc.), 
viral nuclei (dsDNA, ssRNA and dsRNA), and other components. The signals through 
the PAMPs recognition by PRRs activate the innate immune system. PRRs include 
several receptor families such as Toll-like receptor (TLR), RIG-I-like receptor (RLR), 
NOD-like receptor (NLR), and c-type lectin-like receptor (CLR). Among them, TLR is 
the most researched and known microbial recognition molecules of vertebrates including 
fish after the discovery of the homolog gene of Drosophila Toll receptor. Table 1.1 
shows the TLRs in mammals and fish that have been identified so far. Ten TLR genes 
(i.e., TLR1-10) have been found in human, and in mice, TLRs11-13 have been 
additionally detected. In fish, TLR genes in many species have been found using in silico 
genomic databases such as Japanese pufferfish and zebrafish, and the TLR genes that 
might be fish-specific is also included among them (Roach et al, 2005; Takano et al, 
2010; Aoki et al, 2013). The secretion type TLR5 (TLR5S), TLR14 (the same as the 
TLR18 in zebrafish), TLR19, TLR20, TLR21, TLR22, and TLR23 were found as the 
TLR molecules that seem to be specifically present in fish; these TLRs were indentified 
inJapanese pufferfish, Japanese flounder, rainbow trout, zebrafish, etc. (Hwang et al, 
2011a, 2011b; Takano et al, 2010; Aoki et al, 2013). TLR5S, which was cloned from 
rainbow trout, recognizes and binds to bacterial flagellin and activates the signaling into 
the TLR-cascade in the same manner as the membrane type TLR5 (TLR5M) in 
mammals (Tsujita et al, 2004). The presence of TLR5S and TLR5M has also been 
confirmed in Japanese flounder and Japanese pufferfish (Hwang et al, 2010; Oshiumi et 
al, 2003). However, the function of other TLRs, TLR14 and TLR19-23, is still unknown. 
Furthermore, TLR6, TR10, TLR11, TLR12 are present in mammals but not found in 
fish. TLR1 and TLR6 genes are present in tandem on the genome in humans. However, 
it has been revealed that TLR1 gene is found in Japanese pufferfish genome but TLR6 
gene is not present in the vicinity by synteny analyses (Oshiumi et al, 2003). It is 
revealed that TLR6 is evolutionary close to the TLR1 since the amino acid sequence is 
similar. TLR1 found in fish is considered to be an ancestral gene of TLR1 and TLR6 in 
mammals, but the details are not clear. TLR4 gene has been identified in carp family 
such as zebrafish, but it is known that it does not recognize the LPS different from TLR4 
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in mammals (Sepulcre et al, 2009). Furthermore, since TLR4 is not found in Japanese 

pufferfish genome by synteny analysis but present in the zebrafish genome suggests that 

the TLR genes in fish are different. Therefore, it suggests that diversity of the PAMPs-

recognition mechanism is present even in the same teleosts such as Japanese pufferfish 

and zebrafish, (Roach et al, 2005). Interestingly, the region of Japanese flounder TLR2 

gene matches the locus which is involved in resistance against Lymphocystis disease has 

been found by QTL analysis searching the vicinity area in Japanese flounder genome 

(Hwang et al, 2011a). 

 
Sub- 

families 

TLRs Identification PAMPs Teleosts identified 

Teleosts Mammals Teleosts Mammals Species 

TLR1  

Subfamily 

TLR1 + + Unknown Triayl  

lipopeptides 

Japanese pufferfish 

Japanese flounder 

Orange spotted-grouper 

Rainbow trout 

Zebrafish 

TLR2 + + Peptidoglycan,  

lipoteichoic  

acid,  

Pam3CSK4 

Lipoprotein/ 

lipopeptides,  

Peptidoglycan,  

Lipoteichoic  

acid, 

Zymosan,  

Pam3CSK4 

Channel catfish 

Chionodraco hamatus** 

Common carp 

Japanese flounder 

Japanese pufferfish 

Orange spotted-grouper 

Trematomus bernacchii** 

Zebrafish 

TLR6 - + N/A Lipoteichoic  

acid 

N/A 

TLR10 - + N/A N/A N/A 

TLR14 

 (TLR18*) 

+ - N/A N/A Atlantic cod 

Japanese flounder 

Japanese pufferfish 

Zebrafish 

TLR16 + - N/A N/A Atlantic cod 

TLR3  

Subfamily 

TLR3 + + dsRNA,  

poly I:C 

dsRNA,  

poly I:C 

Atlantic cod 

Channel catfish 

Common carp 

Grass carp 

Japanese flounder 

Japanese pufferfish 

Large yellow croaker 

Rainbow trout  

Rare minnow  

Zebrafish 

TLR4 

 Subfamily 

TLR4 # + N/A LPS Grass carp 

Rare minnow 

Zebrafish 

TLR5  

Subfamily 

TLR5M + + Flagellin Flagellin Japanese flounder 

Japanese pufferfish 

Rainbow trout 

Zebrafish 

TLR5S + - Flagellin N/A Atlantic salmon 

Channel catfish 

Japanese flounder 

Japanese pufferfish 
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Rainbow trout 

TLR7 

 subfamily 

TLR7 + + N/A ssRNA,  

Imidazo- 

quinoline 

Atlantic cod 

Common carp 

grass carp 

Japanese flounder 

Japanese pufferfish 

Rainbow trout 

Zebrafish 

TLR8 + + N/A ssRNA,  

Imidazo- 

quinoline 

Atlantic cod 

Atlantic salmon 

Japanese flounder 

Japanese pufferfish 

Rainbow trout 

Zebrafish 

TLR9 + + CpG-ODN CpG-ODN Atlantic cod 

Atlantic salmon 

Common carp 

Gilthead seabream 

Large yellow croaker 

Japanese flounder 

Japanese pufferfish 

Rainbow trout 

Zebrafish 

TLR11 

 subfamily 

TLR11 - + N/A Profilin N/A 

TLR12 - + N/A Unknown N/A 

TLR13 - + N/A Unknown N/A 

TLR19 +  N/A N/A Zebrafish 

TLR20 +  N/A N/A Channel catfish 

Zebrafish 

TLR21 + - N/A N/A Atlantic cod 

Channel catfish 

Japanese flounder 

Japanese pufferfish 

Zebrafish 

TLR22 + - dsRNA,  

poly I:C 

N/A Atlantic cod 

Grass carp 

Large yellow croaker 

Japanese flounder 

Japanese pufferfish 

Orange spotted grouper 

Rainbow trout 

Zebrafish 

TLR23 + - N/A N/A Japanese pufferfish 

Green sppotted pufferfish 

 

Table 1.1. Comparison of TLR repertoires and their PAMPs between teleosts and 

mammal 

 

1.4.2. Interferon  

 

Interferon (IFN) was discovered as a factor that inhibits nonspecific proliferation of the 

virus, and it was classified into type-I, -II, and -III in mammals. The type-I IFN includes 

IFN-α,  IFN-β, IFN-ω, IFN-ε, IFN-κ,  IFN-ζ (only in mouse),  IFN-τ (only in cattle), and  
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IFN-δ (only in pig), II type indicates IFN-γ, and III type shows IFN-λ (Pestka et al, 
2004; Ank et al, 2006). It has previously been reported that virus-infected fish cells 
produce type-I IFN (Sano and Nagakura, 1982) and IFN-γ (type-II) (Graham and 
Secombes, 1990). Type I IFN genes have been identified from many fish species after 
the discovery of zebrafish type-I IFN gene by in silico data mining in fish genomes 
(Altmann et al, 2003), and type-II IFN gene was also revealed in many fish species now 
(Robertsen, 2006). However, type-III IFN was reported in mammals and amphibians (Qi 
et al, 2010), but not in fish. As a structural feature of the type I IFN gene, there is no 
intron in mammalian type-I IFN gene whereas fish type-I IFN gene is separated by four 
introns (Zou et al, 2007).  
 
In general, IFNs are produced by bacterial and viral infection or the stimulation by the 
pathogen components. Type-I IFN is mainly secreted from fibroblasts and leukocytes, 
while IFN-γ is produced in NK cells and T cells. The secreted type-I IFN activates the 
JAK-STAT signaling pathway through the IFN receptor, and then leading to the 
induction of expression of IFN-inducible genes such as ISG15 and Mx, to promote 
antiviral activity (Pestka et al, 2004; Robertsen, 2006). On the other hand, type-II IFN 
also through the JAK-STAT pathway, activates macrophages, increases NO production 
and promotes antigen presentation (Robertsen, 2006). Like mammals, fish type-I IFN 
also shows antiviral activity by enhancing gene expression of ISG15 and Mx (Verrier et 
al, 2011). It has been reported that recombinant type-II IFN enhances the expression of 
inflammatory cytokine genes in phagocytes and induces NO production in carp (Arts et 
al, 2010).  
 
In mammals, expression of type I IFN gene is dramatically induced by viral nucleic 
acids, e.g., double-stranded (ds) DNA, single-stranded (ss) RNA or dsRNA. Its 
expression is triggered by their recognition through TLR and RIG-I (retinoic acid-
inducible gene I)-like receptors (RLR) (Takeuchi and Akira, 2010). Extracellular viral 
nucleic acids are taken into the endosome and recognized by TLRs such as TLR9 and 
TLR3, TLR7, and TLR8 (Kawai and Akira, 2011). On the other hand, cytosolic viral 
PAMPs are recognized by RLRs including RIG-I, MDA5 (Melanoma differentiation 
associated gene 5), and LGP2 (Laboratory of genetics and physiology 2), and the 
signaling enhances the production of type I IFN through RLR-adaptors, IPS-1 (IFN-β 
promoter stimulator-1; alternatively called MAVS) (Loo and Gale, 2011). In fish, these 
TLRs and RLRs counterparts were isolated in zebrafish, Japanese pufferfish, Japanese 
flounder, and Atlantic salmon, and their antiviral functions were also reported (Takano et 
al, 2010; Zou et al, 2009; Aoki et al, 2013). These suggest that IFN induction is 
controlled by a mechanism similar to that of mammals. In fact, TLR3, LGP2 and MDA5 
encourage antiviral state by inducing strong expression of type-I IFN and IFN-inducible 
genes (such as ISG15 and Mx) in Japanese flounder embryo cells (i.e., HINAE cells) 
infected with VHSV (Hwang et al, 2012; Ohtani et al, 2010, 2011, 2012). Fish IPS-1 also 
induce antiviral effect, such as those found in zebrafish and Japanese flounder (Biacchesi 
et al, 2009; Simora et al, 2010) (Figure 1.1).  
 
Although it is not clear if Japanese flounder TLR9 induce expression of type-I IFN gene, 
it promotes the expression of inflammatory cytokines in the presence of dsDNA (Takano 
et al, 2007). In mammals, gene expression of type-I IFN is induced by inflammatory 
cytokines (Pestka et al, 2004); it is unknown in fish. 
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Figure 1.1. Mechanism of gene expression and antiviral function of type-I IFN in fish 

 
1.5. Cellular Factors in Fish Innate Immunity  
 
1.5.1. Immune-Related Leukocytes in Fish 
 
Fish leukocytes are basically classified into lymphocytes, granulocytes, monocytes, and 
thrombocytes (cells involved in blood coagulation corresponding to platelets in 
mammals) the same as in the mammalian system. Lymphocytes are divided into T and B 
cells that are directly involved in specific immunity (adaptive immunity) and is further 
divided into NCC (Nonspecific Cytotoxic Cell) that is considered equivalent of natural 
killer (NK) cells in mammals (Secombes, 1996). Granulocytes are divided into 
neutrophils, eosinophils, basophils according to the staining of cytoplasmic granules. It 
is generally rare for both to find both eosinophils and basophils in fish. Monocytes 
differentiate into macrophages. Neutrophils, monocytes (macrophages) and B cells have 
phagocytic activity among the white blood cells (Secombes, 1996; Li et al, 2006). 
Eosinophils and thrombocytes also engulf foreign substances in some fish species, but it 
is not considered that thrombocytes sterilize and digest foreign substance. In addition, it 
has been identified that dendritic cells (DC: Dendritic cells) in mammals have 
phagocytic activity and is important in the antigen presenting cells, but there are still 
many questions in fish although DC-like cells have been reported (Pettersen et al, 2008; 
Wittamer et al, 2011). The B-cells with phagocytic activity described above are also 
called Phagocytic B cells, it has been found in fish and amphibians (Li et al, 2006). 
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Neutrophils, monocytes/macrophages, NCC especially plays an important role in non-
specific host defense. 
 
1.5.2. Neutrophil, Monocyte and NK Cell in Fish 
 
Neutrophils are the most abundant cells among granulocytes, monocytes in the blood 
and show active migration and phagocytic activity and sterilize/digest phagocytosed 
foreign substance. Neutrophils in mammals has multinucleated, lobulated sphere nuclei, 
while neutrophils in fish is polynuclear in salmonid fish, but in many fish species, at best 
is a horseshoe shape.  
 
Monocyte/macrophages slowly come together in the inflamed site after neutrophils. It 
migrates actively, phagocytose and sterilize/digest as well as neutrophils. Macrophages 
that have infiltrated into the inflamed site phagocytose debris (dead cells) of neutrophils 
and the foreign substances that cannot be treated in the neutrophil. It is considered that 
the life of neutrophils that has been leaching into the inflamed part is short and they 
normally die in the inflammation section. On the other hand the life of the macrophage is 
longer and some goes back to the kidney from the inflamed part after phagocytosis of the 
foreign substance. Macrophages are present as macrophages resident in heart, gills, 
kidney, spleen, and in the peritoneal cavity and bowel even when the inflammation is not 
happening (Nakamura and Shimozawa, 1994; Zapata et al, 1996).  
 
It is well known that NK cells nonspecifically adhered and attack the virus-infected cells 
and cancer cells in mammals. It is considered that NCC corresponds to the NK cells in 
the fish and it have been identified in rainbow trout, catfish, tilapia, and zebrafish (Evans 
and Jaso-Friedmann, 1992; Ghoneum et al, 1988; Moss et al, 2009).  
 
1.5.3. Phagocytosis 
 
For phagocytic cells to engulf foreign substance, the foreign substance needs to attach to 
the phagocytic cell surface with the opsonic activity. Opsonin is a general term for a 
biological substance that binds to the surface of foreign substances and efficiently 
promotes phagocytosis by phagocytic cells. Complement component fragment (C3 
origin), derived from antibodies (Fc), and lectin is important as opsonins (Sunyer and 
Lambris, 1998; Tosi, 2005). Many reports show that opsonin exists in fish. Furthermore, 
it has already been reported the C3b receptors that recognize opsonins on phagocytes are 
present in carp neutrophils cell surface (Matsuyama et al, 1992). Fc receptors have been 
identified from neutrophils of peripheral blood of catfish (Stafford et al, 2006). Opsonic 
activity is conspicuous in the phagocytosis of neutrophil, while opsonin is not always 
necessary in macrophages; this is the same in fish (Iida et al, 2001).  
 
As described in 4-1, some B cells show the phagocytic activity in fish. B cells and 
macrophages are evolutionarily differentiated from the same precursor cells. It is 
considered that the function of progenitor cells still remains in B cells of fish and 
amphibians. It is suggested that this phagocytic B cells are the cells ancestor closer to 
mammalian B-1 cells since it express the membrane type immunoglobulins (IgT or IgM) 
in rainbow trout (Li et al, 2006).  
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1.6. Conclusion  
 
Specific biodefense (immunity) is necessary in order to prevent the disease since the 
non-specific biodefense is not always effective against obligate pathogens. On the other 
hand, the conditional pathogens intrude into the host when their non-specific defense 
activity is weak. A better understanding of non-specific defense mechanisms of fish and 
the conditions (such as immune modulators and stress) makes the damage or loss caused 
by pathogens improves in sustainable aquaculture. For this purpose, it is necessary to 
reveal the remaining questions of non-specific defense mechanisms in fish in the future.  
 
Glossary 
 
APC:  Antigen presenting cells,  

MAC:  Membrane-attack complex,  

MBL:  Mannose-binding lectin,  

MASP:  MBL-associated serine protease,  

PRRs:  Pattern recognition receptors,  

TLR:  Toll-like receptor,  

RIG-I:  Retinoic acid-inducible gene 1,  

RLR:  RIG-I-like receptor,  

NLR:  NOD-like receptor,  

CLR:  c-type lectin-like receptor,  

IFN:  Interferon,  

NK cells:  Natural killer cells,  

JAK:  Janus kinase,  

STAT:  Signal transducer and activator of transcription,  

ISG:  Interferon stimulated gene,  

DC:  Dendritic cells,  

NCC:  Nonspecific cytotoxic cells 

 
2. ADAPTIVE IMMUNITY IN FISH 
Teruyuki Nakanishi  
 
2.1. Synopsis 
 
There are three major classes of living fish, i.e. agnathans (jawless vertebrates), 
elasmobranchs and teleosts. Agnathans have different immune system from other class 
of fish and does not have immunoglobulin (Ig) but variable lymphocyte receptors 
(VLRs). Teleosts and elasmobranchs are the lowest vertebrates which possess adaptive 
immunity akin to mammalian one having Igs, the major histocompatibility complex 
(MHC)/T cell receptor (TCR) system and lymphocyte populations analogous to B cells, 
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T cells, NK cells. Fish evoke specific immune responses against a variety of antigens 
with memory. However, fish immune system is different from that of mammals in terms 
of differentiation of lymphoid tissues, i.e. lack of bone marrow and lymph node, and 
limited number of Ig subclasses, i.e. IgM, IgD and IgT for teleosts and IgM, IgW, 
IgNAR (new antigen receptor) for elasmobranchs and temperature dependence. On the 
other hand, they have multiple isoforms in immune-related molecules, e.g. cytokines: 
TNFα, IL-1β; lymphocyte cell surface markers: CD4, CD8; compliment components: 
C2, C3, etc. The additional number of genes resulting from genome duplication may 
have creative roles in evolution such as speciation, adaptation, diversification, and 
promotion of new functions, although differential roles of the isoforms have yet to be 
clarified in most cases. 
 
2.2. Cells Involved in Adaptive Immunity 
 
Adaptive immunity is mediated by two lymphocyte populations classified as B cells and 
T cells. Conventional T cells all possess a TCR and CD3 together with co-stimulatory 
and co-inhibitory surface molecules and are divided into two functional groups of 
cytotoxic and helper T cells. In teleosts, three major B cell lineages have been described, 
those expressing either IgT or IgD, and the most common lineage which co-expresses 
IgD and IgM. Recently, B cell subsets with phagocytic and intracellular bactericidal 
activities have been reported (Li et al, 2006). This finding led to the existence B cells 
with phagocytic and microbicidal abilities even in mammals (Sunyer, 2012). 
 
Toda et al. (2011) demonstrated in vitro proliferation of CD4+ T cells by allogeneic 
combination of mixed leukocyte culture (MLC) and antigen-specific proliferation of 
CD4+ T cells after in vitro sensitization with OVA suggesting the primordial functions of 
helper T cells in fish. Recently, a culture system of CD4+ αβ T cells has been established 
in carp and CD4+ αβ T cell clones sharing some features with mammalian Th2 cells were 
obtained by picking single cells from the bulk culture of helper T cells (Yamaguchi et al, 
2013). In channel catfish five groups of clones including alloantigen specific TCR αβ+ 
cytotoxic clones (presumably CTLs), NK-like cells were identified employing MLC 
followed by limiting dilution (Stuge et al, 2000). Effector cells in CMC against 
allogeneic cells and/or virus-infected syngeneic cells were first characterized as surface 
Ig (sIg) negative cells and, later on, as cells expressing CD8α and/or TCR α or β mRNA. 
Only CD8α+ CTLs among CD8α+, CD4+, sIgM+ and CD8α-CD4-sIgM- cells showed 
specific cytotoxicity against allogeneic cells, while sIgM+ cells including NK-like cells 
exhibited non-specific killing (Toda et al, 2009). This is the first demonstration of the 
presence of CTLs in a defined T cell subset in fish.  
 
Regulatory T cell (Treg)-like cells with the phenotype CD4-2+, CD25-like+, Foxp3-like+ 
have been reported from a pufferfish which showed suppressive effect on MLR and 
nonspecific cytotoxic cell (NCC) activity in vitro (Wen et al, 2011).Recently, antigen 
presenting cell (APC) resembling mammalian dendritic cells (DCs) have been identified 
in zebrafish. Zebrafish DCs possess the classical morphological features of DCs and 
exhibit expressions of genes associated with DC function and activate T lymphocytes in 
an antigen-dependent manner (Lugo-Villarino et al, 2010). 
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2.3. Molecules Involved in Adaptive Immunity 
 
2.3.1. Immunoglobulins 
 
Teleost B cells share many similarities with mammalian B cells, including 
immunoglobulin (Ig) gene rearrangements, allelic exclusion, production of membrane Ig 
and secreted Ig forms (reviewed in (Edholm et al, 2011)). As opposed to other vertebrate 
taxa, IgM is the primary antibody present in teleost serum and cutaneous mucus, 
although the capabilities of IgD as a cytophilic effector molecule and predominant role 
of IgT in gut mucosal infections have been recently reported. In most teleost, serum IgM 
is expressed as a tetramer, although IgM monomers have been described in some fishes. 
In contrast, serum IgT is expressed as a monomer in rainbow trout serum, and a tetramer 
in gut mucous (Zhang et al, 2010). Teleost IgM possess varying levels of inter-
monomeric disulfide polymerization, yielding tetramers, trimmers, dimers, and 
monomers. A direct association of affinity with disulfide polymerization has been 
reported in IgM. Polymerization of IgM is suggested to contribute the affinity maturation 
in teleost which lack class-switching (Ye et al, 2011). Teleost IgT and IgM have 
comparable genomic structures with mammalian TCRδ and TCRα. 
 
Three Ig isotypes, sIgM, IgW, IgNAR are present in elasmobranch and IgNAR is only 
found in this group. IgNAR binds antigen by means of a single V domain and IgNARV 
gene undergoes extensive hypermutaion resulting in affinity maturation (Criscitiello et 
al, 2006). Shark Ig loci are found in many “clusters” as opposed to the single translocon 
organization common to mammals. Each of the hundreds of Ig loci in the shark genome 
contains V, D, J and C genes. 
 
2.3.2. T-Cell Receptors 
 
TCR is divided into two forms, αβ-T cells expressing a heterodimer of α and β chains 
and γδ-T cells expressing a heterodimer of γ and δ chains. In mammals αβ-T cells are the 
more abundant in lymphoid organs and blood, whereas γδ-T cells are distributed in 
mucosal tissues. The initial description of teleost TCR (TCRβ) was reported in rainbow 
trout (Partula et al, 1995) and in shark (Rast et al, 1994). Orthologs for all four TCR 
chains have been reported in teleosts and elasmobranchs (see review (Laing et al, 2011)). 
Basic structure of TCR is well conserved in both teleosts and elasmobranchs. Only the 
conventional α, β, γ, and δ TCR chains with single C and V domains have been 
described from shark, although shark Ig loci shows cluster organization and horned 
shark TRB was multi-cluster as an exception. However, fish TCR display novel 
characteristics not observed for mammals. For instance, teleost TCRβ chain locus 
contains two highly divergent constant domain regions and salmonids express 5 distinct 
constant region genes for TCRγ. Sharks possess a novel TCR-δ variant with which a 
variable domain of IgNAR is recombined.  
 
2.3.3. MHC Class I/II 
 
MHC genes including class IA, B2m, class IIA and class IIB have been reported from a 
number of fish species including elasmobranchs. In teleost, MHC class I and II genes are 
separately located on different chromosomes, although the MHC I and II linkage is 
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observed in sharks as in mammals (Stet et al, 2003). Extensive polymorphism of classic 
MHC class I (Ia) genes has been observed in rainbow trout and shark. Trans-species 
polymorphism is a common feature throughout vertebrates, e.g. the amino acid sequence 
of the α2 domain of MHC class I a gene is more closely related to that of the carp and 
zebrafish than that of other salmonids. Ubiquitous expression of MHC Ia genes has been 
reported in many species of fish. Enhanced expression of MHC class II has been noted 
in lymphoid tissues of Atlantic salmon following vaccination (Fischer et al, 2013). 
Important role of the MHC class II linkage group in tissue rejection has been reported in 
Gila topminnow. MHC class I linkage group was found to be the major determinant for 
in vivo allograft rejection. Correlation between polymorphism in MHC class Ia genes 
with behavioral traits such as aggression has been reported in rainbow trout (see review 
(Nakanishi et al, 2011)). 
 
2.4. Cell-Mediated Immunity 
 
CTL-mediated virus-specific cytotoxicity in fish was first described by Somamoto et al. 
(2000), although a few earlier papers had described the lysis of virus-infected cells by 
NK-like cells in fish (See review (Nakanishi et al, 2002)). Convincing data showing the 
essential roles of CTLs against viral infection were reported by Somamoto et al. (2002). 
Recently, Utke et al. (2007) reported that PBL from low dose viral haemorrhagic 
septicaemia virus (VHSV)-infected rainbow trout killed MHC class I-matched VHSV-
infected cells. More recently, presentation of viral antigen derived peptides by MHC Ia 
and its regulation by IFN has been reported in grass carp (Chen et al, 2010).  
 
CTLs kill their cellular targets via either of the two mechanisms that each require direct 
contact between the effector and target cells, i.e. the secretory and non-secretory 
pathways mediated by perforin/granzymes and Fas/FasL, respectively. In fish, the 
presence of FasL has been reported at both protein and gene levels in several fishes 
(Toda et al, 2011). Recombinant FasL protein induced apoptosis in a Japanese flounder 
cell line indicating that fish possess a Fas ligand system (Kurobe et al, 2007). A major 
role for the perforin/granzyme pathway in the killing mechanism of alloantigen specific 
CTLs has been reported in channel catfish, carp and ginbuna (Toda et al, 2011; Zhou et 
al, 2001). These studies strongly suggest that pathways of killing similar to those of 
mammals are operative in fish.  
 
2.5. Transplantation Immunity 
 
Skin and/or scale allograft rejection is a representative phenomenon of specific cell-
mediated immunity. Cellular reactions, that occur at the grafting site are essentially the 
same as those in mammals, as characterized by specificity and memory (reviewed in 
(Manning et al, 1996)). Agnathans and elasmobranchs reject first-set grafts in a chronic 
manner, while teleosts can evoke allograft rejection in an acute fashion. Accelerated 
response on second-set grafts is commonly observed in all groups of fish. However, the 
precise mechanism of allograft rejection has yet to be investigated, although the 
involvement of T cells in allograft rejection has been suggested in sea bass (Abelli, 
1999). 
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The Graft-Versus-Host Reaction (GVHR) is a phenomenon of cell-mediated immunity in 
which CTLs play the major role. The presence of GVHR in a teleost fish has been 
demonstrated in ginbuna and amago salmon (see review (Nakanishi et al, 2011). Most 
features of acute GVHD in fish are quite similar to those reported for mammals, 
suggesting the existence of similar mechanisms. More recently, essential roles of donor-
derived CD8α+ T cells together with CD4+ T cells in the induction of acute GVHR/D in 
teleost have been reported (Shibasaki, 2010).  
 
Glossary 
 
Ig:  Immunoglobulin,  

MHC:  The major histocompatibility complex,  

TCR:  T cell receptor,  

MLC:  Mixed leukocyte culture,  

CTLs:  Cytotoxic T lymphocytes,  

NCC:  Nonspecific cytotoxic cell,  

APC:  Antigen presenting cell ,  

DCs:  Dendritic cells,  

GVHR:  Graft-Versus-Host Reaction,  

GVHD:  Graft-Versus-Host Disease 

 
3. SHRIMP BIO-DEFENSE 
Ikuo Hirono and Sheryll G. Hipolito 
 
3.1. Synopsis 
 
Because of the importance of penaeid shrimps in world aquaculture, there is much 
interest in understanding their immune system to improve their resistance to pathogenic 
microorganisms. Basic knowledge of shrimp immunity is needed to develop strategies 
for prophylaxis and control of diseases in shrimp aquaculture. Shrimps possess an innate 
immunity that is composed of both humoral and cellular responses. However, little is 
known about these systems particularly the mechanisms involved at the molecular level. 
Here, some recent researches of shrimp immune responses against microbial pathogens 
are presented. 
 
3.2. Introduction 
 
Shrimps are one of the most important aquaculture species not only for commercial 
products but also for animal protein source for human consumption. Annual shrimp 
production is growing year by year after the 1980’s. However, the growing shrimp 
aquaculture was accompanied by the outbreak of infectious diseases. 
 
Although devoid of an adaptive immune system, shrimp have an innate immune system 
that combats invading pathogens. This includes phagocytic activity of hemocytes, 
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melanization, antimicrobial proteins and peptides, clotting of hemolymph and unknown 
unique defense system in shrimp. 
 
3.3. Phenol Oxidase 
 
Prophenol oxidase is one of the most studied immune molecules in shrimp (Table 3.1). It 
has been cloned from several different penaeid species. Gene silencing/knock down of 
prophenol oxidase in kuruma shrimp, Marsupenaeus japonicus, showed increased 
bacteria in the haemolymph and increased mortality without artificial microbial 
challenge (Fagutao et al, 2009). These results suggested that the prophenol oxidase is an 
important molecule for shrimp survival in normal environmental condition (Fagutao et 
al, 2009).  
 

         Species    References 

  
Marsupenaeus japonicus Adachi et al., 1999 

 Fagutao et al., 2009 

Penaeus monodon Amparyup et al., 2009 

 Sritunyalucksana et al., 1999 

Litopenaeus vannamei Lai et al., 2005 

 Pan et al., 2008 

Wang et al., 2006  

Yeh et al., 2009 

 
Okumura, 2007 

Penaeus californiensis Hernández-López et al., 1996 

 Gollas-Galvan et al., 1999 

 Gollas-Galván et al., 1997 

Fenneropenaeus chinensis Gao et al., 2009 

    
 

Table 3.1. Prophenol oxidase in penaeid shrimps. 
 
3.4. Antimicrobial Proteins/Peptides 
 
In shrimp, the release of antimicrobial proteins/peptides, more commonly known as 
AMPs, act as the first line of defense against pathogen invasion (Hancock and Diamond, 
2000). A repertoire of penaeid AMPs have been identified and discovered by analysis of 
expressed sequence tag libraries, microarray studies and proteomic methods. These 
include anti-lipopolysaccharide factors, penaeidins, crustins, lysozymes, single-whey 
acidic protein domain containing peptides, bactinectin and stylicins (Tassanakajon et al, 
2013). With the advent of RNA interference and recombinant protein technology, 
functions of AMPs have been discovered and are proven to exhibit a wide range of 
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 antimicrobial activities against bacteria, viruses and fungi (Table 3.2). In addition, AMP 

helps in maintaining a balanced bacterial community in shrimp hemolymph (Kaizu et al, 

2012) Clearly, AMPs are involved in major immune reactions and their productions are 

important against pathogenic microorganism in shrimp. 
 

Family Isoform/ 

Species 

Antimicrobial activity Other activity References 

Crustins CruFc Gram-positive bacteria  Zhang et al., 2007 

 Fc-crus 2 Gram-positive bacteria  Sun et al., 2010 

 Fc-crus 3 Gram-positive bacteria  Sun et al., 2010 

 crustinPm1 Gram-positive bacteria Agglutination Krusong et al., 2012;   

Supungul et al., 2008 

 crustinPm5 Gram-positive bacteria  Vatanavicharn et al.,2009 

 crustinPm7 Gram-positive bacteria;  

Gram-negative bacteria 

Agglutination Krusong et al., 2012; 

Amparyup et al., 2008 

 SWDFc Gram-positive bacteria;  

Gram-negative bacteria;  

fungi 

Protease inhibitory  

Activity  against  

subtilisin A and  

protein K 

Jia et al., 2008 

 SWDPm Gram-positive bacteria Protease inhibitory  

activity against  

subtilisin A 

Amparyup et al., 2008 

 CruslikeFc1 Gram-positive bacteria  Zhang et al., 2007 

 LvABP1 Gram-negative bacteria  Shockey et al., 2009 

Penaeidin LitvanPen2 Gram-positive bacteria; 

 fungi 

 Destoumieux et al., 1999 

 LitvanPen3 Gram-positive bacteria; 

 fungi 

 Destoumieux et al., 1999 

 LitvanPen4 Gram-positive bacteria; 

 Fungi 

 Cuthbertson et al., 2004 

 FenchiPen5 Gram-negative bacteria;  

Gram-positive bacteria;  

Fungi 

 Kang et al., 2007 

 PenmonPen Gram-positive bacteria  Ho et al., 2004 

 PenmonPen3 Gram-positive bacteria; 

 Fungi 

Cytokine Li et al., 2010;   

Destoumieux et al.,1999 

 PenmonPen5 Gram-positive bacteria;  

Fungi; virus 

 Woramongkolchai et al.,  

2011; Hu et al., 2006 

Lysozyme P. monodon Gram-negative bacteria  Supungul et al., 2010 

 M. japonicus Gram-negative bacteria  Kaizu et al., 2012; Bu et  

al., 2008 ; Hikima et al.,  

2003 

 F. chinensis Gram-positive bacteria;  

Gram-negative bacteria 

  

 L. vannamei Gram-negative bacteria  Peregrino-Uriarte et al.,  

2012; Sotelo-Mundo et  

al., 2003  

 F. merguiensis Gram-positive bacteria;  

Gram-negative bacteria 

 Mai et al., 2009 

 L. stylirostris Gram-positive bacteria;  

Gram-negative bacteria 

 Mai et al., 2010; de  

Lorgeril et al., 2008 

Anti-lipopoly- 

saccharide  

factors 

ALFPm2 Gram-positive bacteria;  

Gram-negative bacteria 

 Tharntada et al.,  

unpublished data 
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 ALFPm3 Gram-positive bacteria;  

Gram-negative bacteria; 

 Fungi; virus 

LPS and LTA  

binding activity 

Tharntada et al., 2009; 

Somboonwiwat et al.,2008;  

Somboonwiwat et al.,2005  

 LsALF1 Virus  de la Vega et al., 2008 

 MjALF1  LPS neutralizing  

activity 

Nagoshi et al., 2006 

Modified from Tassanakajon et al., 2013 

 

Table 3.2. Antimicrobial activities of shrimp AMP families. 

 

3.5. Clotting of Hemolymph 

 

Hemolymph clotting in crustaceans is an integral part of the overall invertebrate immune 

response and important in the prevention of blood loss during injury and wound healing 

(Kwok and Tobe, 2006). The shrimp coagulation is believed to rely on the formation of 

a clottable protein polymer that is catalyzed by the Ca
2+

 dependent covalent linkage of 

the large dimeric clotting protein by transglutaminase into long chains (Tassanakajon et 

al, 2013). Transglutaminase and clotting proteins have been identified in several shrimp 

species (Table 3.3). Phenotypic studies on hemolymph collected from M. japonicus 

where transglutaminase and clotting protein were silenced by RNA interference failed to 

polymerize/coagulate (Maningas et al, 2008). In addition, tranglutaminase and clotting 

protein depleted M. japonicus resulted to a significantly higher mortality rate after 

microbial infection (Maningas et al, 2008). Clearly, these two proteins play an important 

function in blood coagulation and immune response to microbial infection. It was also 

evidenced that silencing of transglutaminase significantly downregulated some 

important AMPs like crustin and lysozyme expression suggesting that transglutaminase 

may also play a role in the regulation some immune-related like AMP expression 

(Fagutao et al, 2012). 
 

Coagulation/clotting 

component 
Species References 

Transglutaminase Litopenaeus vannamei Yeh et al., 2009 

 Fenneropenaeus chinensis Liu et al., 2007 

 Marsupenaeus japonicus Yeh et al., 2006 

 Penaeus monodon Chen et al., 2005; Yeh et al., 2006 

Clotting proteins Marsupenaeus japonicus Cheng et al., 2008 

 Litopenaeus vannamei Cheng et al., 2008 

 Farfantepenaeus paulensis Perazzolo et al., 2005 

  Penaeus monodon Yeh et al., 1999 

 

Table 3.3. Transglutaminase and clotting proteins identified in shrimps. 

 

3.6. Other Shrimp Immune-Related Genes 

 

In addition to the phenol oxidase system, antimicrobial peptides/proteins and blood 

clotting system, other immune-related molecules were also identified in penaeid shrimps 

including proteinases/proteinase inhibitors, heat shock proteins, apoptotic tumor-related 

proteins, pattern recognition receptors or pattern recognition proteins, and proteins 

involved  in  signaling transduction  and oxidative  stress. These proteins work  by  
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inhibiting bacterial or viral activities, protection against stress, elimination of leftover, 
damaged or infected harmful cells, microbe recognition, activation of signaling 
pathways involve in immune responses and in maintaining normal aerobic metabolism. 
 
Glossary 
 
AMPs:  Antimicrobial Proteins or Peptides  
 
4. SHELLFISH BIO-DEFENSE 
Keisuke G. Takahashi, Naoki Itoh and Makoto Osada 
 
4.1. Synopsis 
 
Human has exploited shellfish as important bio-resources for multiple purposes; for 
example, seafood and pearl production. Aquaculture of shellfish is one of the most 
important fishery industries worldwide. Therefore, interest in shellfish immunity has 
developed due to the importance of aquaculture and their role in the aquatic 
environment. Shellfish, as well as other invertebrates, do not possess adaptive immunity. 
Therefore, to combat infection, shellfish rely on an innate immune system, which is 
comprised of multiple bio-defense reactions employing circulating hemocytes and 
multiple defense molecules. Circulating hemocytes, which possess strong migration 
ability in response to invading microorganisms and subsequently actively phagocytose 
these invaders, are the most responsible in bio-defense in shellfish. Humoral defense 
factors comprise molecules of two types, those which act in bio-defense with the 
recognition of pathogenic microorganisms and those that mediate microbial killing and 
macromolecular degradation. 
 
4.2. Introduction 
 
Shellfish belongs to the phylum Mollusca and is mainly comprised of bivalves and 
gastropods. The Phylum Mollusca is one of the largest and numerous groups in the 
animal kingdom. Shellfish and microorganisms coexist in the biosphere in numerous 
ways. Thus, bivalves have evolved sensitive mechanisms for recognizing pathogens and 
an array of strategies to defend themselves against attacks by microorganisms such as 
bacteria, fungi, and parasites. An oft-asked question is how invertebrates including 
shellfish survive against pathogenic microorganisms without an adaptive immune 
system. Indeed, invertebrates do not have lymphocytes and do not produce antibodies 
(Loker et al, 2004; Rowley and Powell, 2007). They have only an innate immune system 
that comprises hemocytes and non-specific humoral defense molecules (Bachère et al, 
2004; Song et al, 2010). Therefore, to combat infection, bivalves rely on multiple bio-
defense reactions. The point of bio-defense mechanisms is to recognize and eliminate 
various types of pathogens (Loker et al, 2004; Rowley and Powell, 2007; Bachère et al, 
2004; Song et al, 2010). Circulating hemocytes, which possess strong migratory ability 
in response to invading microorganisms and subsequently actively phagocytose these 
invaders, are the most responsible factor in bio-defense in shellfish (Cheng, 1996; Hine, 
1999). Humoral defense factors comprise molecules of two types, those which act in bio-
defense with recognition and binding to typical microbial pathogen-associated molecular 
patterns (PAMPs), and those which mediate microbial killing and macromolecular 

 104  



FISH DISEASES - Fish And Shellfish Bio-Defense - Teruyuki Nakanishi, Takashi Aoki, Jun-ichi Hikima, Ikuo Hirono, Sheryll G. 
Hipolito, Keisuke G. Takahashi, Makoto Osada, Naoki Itoh 

©Encyclopedia of Life Support Systems (EOLSS) 

degradation (Gestala et al, 2008;  Lemaitre and Hoffmann, 2007). It is considered, in 
invertebrates including shellfish, that the former might be lectins and peptidoglycan 
recognition proteins (PGRPs) and that the latter might be antimicrobial peptides (AMPs) 
and various defense-related enzymes such as lysozymes. Here, we review current 
knowledge of the innate immunity of shellfish, especially bivalve mollusks, focusing on 
phagocytosis by hemocytes, microbicidal reaction of lysozymes, and immune 
recognition. 

 
4.3. Cellular Bio-Defense in Shellfish 
 
4.3.1. Hemocytes 
 
Shellfish hemocytes morphologically resemble mammalian phagocytic leukocytes and, 
like these leukocytes, have ability to recognize, engulf, and degrade pathogenic 
microorganisms (Cheng, 1996; Hine, 1999; Takahashi and Muroga, 2008; Canesi et al, 
2002). Different forms and functions of bivalve molluscan hemocytes have been 
reviewed in depth (Cheng, 1996; Hine, 1999). A classification of the hemocytes has 
resulted in the recognition of two categories of cells, which have been designated as 
granulocytes and hyalinocytes (agranulocytes) (Figure. 4.1). Granulocytes are 
distinguished from other hemocytes by the presence of many cytoplasmic granules 
(Cheng, 1996; Canesi et al, 2002). Hyalinocytes meanwhile, are further classified into 
the following two subtypes: common hyalinocytes and small agranulocytes (Takahashi 
and Muroga, 2008; Canesi et al, 2002). 

 
Figure 4.1. Photomicrographs of C. gigas hemocytes (×400). Left panel: Granulocytes. 

Right panel: Hyalinocytes. 
 
Cheng (Cheng, 1996) described that the differences in ages, physiological states, and 
environmental factors influence the number of circulating hemocytes in each individual 
mollusks and cause large fluctuations in both the total number of hemocytes and the 
ratios between the hyalinocytes and granulocytes. Therefore, the establishment of 
baseline counts of hemocytes in oysters or other molluscan species is difficult. For 
instance, the hemocytic density in C. gigas hemolymph exhibited a remarkable seasonal 
change. The total hemocyte count in each C. gigas individual collected from the same 
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hanging-place in Onagawa Bay varied from 617 ± 149 (February, 2007) to 3,121 ± 
267/mm3 (June, 2007). 
 
The proportion of hyalinocytes to granulocytes also varied during the year; however, the 
number of hyalinocytes was always greater than that of granulocytes. The hyalinocyte 
ratio varied from about 68.2% to 88.3% of the total number of hemocytes in C. gigas 
that were examined. In contrast, in the American oyster C. virginica hemocytes, the 
number of granulocytes is much greater than that of the hyalinocytes (agranulocytes). 
For instance, granulocytes comprised about 87.5% of the total number of hemocytes in 
C. virginica (Cheng, 1996).  
 
4.3.2. Phagocytosis 
 
The phagocytic process of hemocytes is characterized by the following four phases: (1) 
recognition of non-self materials, (2) binding of non-self materials to hemocytes (surface 
attachment), (3) engulfment of non-self materials into phagosomes, and (4) intracellular 
killing and degradation of non-self materials in most instances (Figure 4.2). In many 
species of bivalve mollusks, it is well documented that the hemocytes are capable of 
phagocytizing bacteria and subsequently degrade them intracellularly, suggesting that the 
presence of bio-defense mechanisms is mainly mediated by phagocytosis against 
invading bacteria (Takahashi and Muroga, 2008). Hine (1999), summarized the 
phagocytic characterization by both hyalinocytes and granulocytes: granulocytes exhibit 
a high phagocytic ability against various foreign particles; on the other hand, 
agranulocytes may have a non-phagocytic ability or a lower phagocytic ability than 
granulocytes.  

 
 

Figure 4.2. Photomicrograph of a C. gigas granulocyte phagocytosing yeast cells 
(×1000). 

 
We examined the phagocytic ability of both hyalinocytes and granulocytes against three 
different particles. Both the hyalinocytes and granulocytes exerted phagocytic ability 
against all foreign particles tested (Figure 4.3). Granulocytes were more active 
phagocytes against Escherichia coli cells. Yeast cells were also extensively phagocytized 
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by granulocytes, but hyalinocytes showed little phagocytic activity for yeast cells. These 
results suggest that most foreign particles, if not all, are more actively phagocytized by 
granulocytes than by hyalinocytes. 

 
Figure 4.3. Phagocytosis of three different particles by hyalinocytes and granulocytes of 

C. gigas. The percent exhibiting phagocytosis (phagocytic rate) was calculated as 
number of hemocytes engulfing at least one particle/total number of hemocytes counted. 
 
4.4. Humoral Bio-Defense in Shellfish 
 
4.4.1. Microbicidal Factors 
 
Lysozymes 
 
Lysozymes (EC 3.2.1.17) occur in a wide variety of cells, tissues, and secretions from 
bacteriophages to mammals (Song et al, 2010). They are a family of glucoside 
hydrolases that cleave the glycosidic bond between N-acetylmuramic acid and N-
acetylglucosamine in peptidoglycans forming bacterial cell walls. Thus, lysozymes are 
bacteriolytic enzymes and play a major biological role in bio-defense, as these enzymes 
can act as antibacterial and immune-modulating agents (Takahashi and Itoh, 2011). In 
addition, lysozymes function as important digestive enzymes in some animals. 
Lysozyme activity was firstly detected in the hemolymph and skin mucus from C. 
virginica, and since then, lysozyme and lysozyme-like activity have been found in 
various bivalve mollusks (Song et al, 2010). Three families of lysozymes have been 
identified in animals: chicken type (c-type), goose type (g-type), and a new type of 
lysozyme; i.e., the invertebrate type (i-type) (Gestala et al, 2008).  
 
By using enzymatic analyses, the functions of bivalve lysozymes were revealed to be 
involved in digestion and bio-defense (Takahashi and Itoh, 2011). Bacteria are the chief 
source (nitrogen and phosphorous) of food in bivalve mollusks as well as in other 
invertebrates. Recently, the presence of multiple lysozymes with different biochemical 
properties has been demonstrated (Gestala et al, 2008; Xue et al, 2010). For instance, A 
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C. virginica lysozyme purified from plasma (CVL-1) was found to be unique in its N-
terminal amino acid sequence and showed optimal activity at high ionic strength. CVL-1 
possesses strong antimicrobial activity, which suggested that its main role is in bio-
defense (Gestala et al, 2008). Furthermore, a different lysozyme, designated CVL-2, 
showed high amino acid sequence similarity to other bivalve lysozymes, but its 
biochemical and molecular properties, distribution in the oyster body and site of gene 
expression suggested that its role was in digestion (Xue et al, 2010). Moreover, a third 
lysozyme (CVL-3) was identified from shell liquor of C. virginica (Xue et al, 2010). The 
biochemical properties of CVL-3 suggest it represents a transitional form between CVL-
1 and CVL-2 used for bio-defense and digestion (Xue et al, 2010). 
 
4.4.2. Self/Non-Self Recognition Molecules 
 
Peptidoglycan Recognition Proteins (Pgrps) 
 
In bivalve mollusks, recognition of bacteria is achieved through the recognition and 
binding of specific forms of peptidoglycan (PGN) by peptideglycan recognition proteins 
(PGRPs). PGN, composed of N-acetylglucosamine and N-acetylmuramic acids, is an 
essential component of bacterial cell walls of both Gram-negative and Gram-positive 
bacteria. Since eukaryotic organisms do not contain PGN in their cellular structures, 
PGN is an ideal target molecule for detecting bacterial invasion in eukaryotic organisms. 
PGN is a highly complex and fast-evolving molecule with marked differences from one 
bacterium to another. 
 
While vertebrate PGRPs are antimicrobial peptides, invertebrate PGRPs are involved in 
immune functions through more complicated ways (Lemaitre and Hoffmann, 2007). In 
C. gigas, we reported that four types of PGRPs have different tissue expression patterns, 
and suggested that these PGRPs are utilized to survey bacterial invasion in various 
tissues (Itoh and Takahashi, 2009). Additionally, some of them seemed to function as 
antimicrobial peptides to kill bacteria, like vertebrate PGRPs. Moreover, we have 
identified of a fifth PGRP cDNA from C. gigas (Itoh and Takahashi, 2009). This novel 
PGRP contained two domains, amidase/PGRP and goose-type (g-type) lysozyme. These 
findings suggest that the PGRP molecule may be a bi-functional protein, PGRP and 
lysozyme. 
 
Lectins 
 
Lectins are protein complexes with carbohydrate-specific binding properties that have 
been widely expressed in plants, invertebrates, and vertebrates and may serve a wide 
variety of physiological functions. Six lectin families have so far been identified; legume 
lectins, cereal lectins, P-type lectins, C-type lectins, galectins, and pentraxins. Of the 
latter four occurring in animals, galectins, pentraxins and C-type lectins are implicated in 
bio-defense (Arason, 1996). Lectins are good candidates for the recognition role because 
they can bind and opsonize foreign material with recognition specificity to PAMPs 
(Arason, 1996;  Vasta et al, 1999). Therefore, lectins may act as an agglutinating 
molecule and opsonin for phagocytosis by hemocytes in bivalve mollusks (Arason, 
1996;  Vasta et al, 1999; Tasumi and Vasta, 2007). Additionally, it is believed that 
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bivalve C-type lectins have different carbohydrate-binding specificities and function to 
be a kind of antibody in non-self recognition (Song et al, 2010).  
 
Invertebrate lectins have been demonstrated in the plasma of the hemolymph and bound 
to hemocyte membrane (Vasta et al, 1999; Tasumi and Vasta, 2007). Lectins have been 
isolated and characterized from the hemolymph of many species of bivalve mollusks 
(Vasta et al, 1999). 
 
In marine bivalves, using potent invasive microorganisms such as marine bacteria 
requires investigation into the functional roles of lectins. For instance, in clam Ruditapes 
philippinarum, a C-type lectin MCL-4 enhanced the phagocytic ability of hemocytes to 
eliminate bacteria via recognition of terminal carbohydrate residues on the microbe 
surface (Song et al, 2010). In C. gigas, the hemolymph contains two erythrocyte lectins 
with the ability to agglutinate horse RBC (Gigalin E) and human RBC (Gigalin H), 
respectively. Gigalin E is a C-type lectin. Gigalin H has a high affinity for sialic acid 
residues in glycoprotein and has strong agglutinating activity against bacteria (Yamaura 
et al, 2008). 
 
Glossary 
 
PGN:  Peptidoglycan,  

PGRPs:  Peptideglycan recognition proteins,  

PAMPs:  Pathogen-associated molecular patterns 
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