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Summary 
 
Bacterial diseases cause huge damages in fish farms worldwide, and numerous bacterial 
pathogens from inland and saline waters have been identified and studied for their 
characterization, diagnosis, prevention and control. In this chapter, eight important fish 
diseases viz. 1) streptococcosis (inland water), 2) furunculosis, 3) bacterial gill disease, 4) 
columnaris disease, 5) bacterial cold-water disease, 6) red spot disease, 7) edwardsiellosis 
(Edwardsiella ictaluri), and 8) motile aeromonads from inland water were included 
covering the topics such as characteristics of disease agent, and pathogenesis, 
histopathological interest, diagnostic method, chemotherapy and disease control. 
 
1. INLAND WATER STREPTOCOCCOSIS 
Terutoyo Yoshida 
 
1.1. Synopsis 
 
Streptococcosis caused by the genera Streptococcus and Lactococcus, occurs in cultured 
and wild fish in freshwater, brackish water, and seawater environments due to the 
worldwide development of intensive fish farming practices. The genera Streptococcus 
and Lactococcus are facultative anaerobic, catalase-negative, and morphologically 
Gram-positive cocci. Historically, hemolysis on blood agar and Lancefield serological 
grouping have been used to identify and classify pathogenic Streptococcus spp. Fish 
pathogenic Streptococcus spp. and Lactococcus spp. are also classified into α, β, and γ 
(non-hemolysis) hemolysis types and Lancefield groups B, C, and non-typable.  
 
Inland freshwater streptococcosis in cultured fish is caused by several bacterial pathogens, 
including L. garvieae, L. piscium, S. iniae, Vagococcus salmoninarum, and Lancefield 
serological group B S. agalactiae (GBS) and group C S. dysgalctiae. L. garvieae, S. iniae, 
and S. agalactiae, and S. dysgalactiae cause serious diseases in freshwater fish and in 
cultured and wild saltwater fish. In particular, a mass mortality of wild mullet occurred in 
Kuwait Bay due to β-hemolytic S. agalactiae infection (Evans et al., 2002) (Figure 1.1). 
Although S. agalactiae causes diseases in marine fish, this section focuses on Lancefield 
serological group B S. agalactiae (GBS), L. piscium, and V. salmoninarum as causal 
agents of streptococcosis in freshwater fish. L. garvieae, S. iniae, and S. dysgalactiae also 
cause diseases in salmonids, sweetfish (Plecoglossus altivelis), or tilapia in freshwater 
environments. These pathogens will be described in the section on bacterial pathogens in 
saltwater streptococcosis.  
 
1.2. Introduction 
 
Inland water streptococcosis occurs in freshwater fish species, mainly tilapia and 
salmonids. S. agalactiae causes diseases in warm water species including tilapia. S. 
agalactiae infections occur in cultured and wild fish species in both marine and 
freshwater environments in many countries including Australia, Brazil, Kuwait, Israel, 
USA, and Thailand. Streptococcosis in salmonids under low water temperature 
conditions is caused by V. salmoninarum and L. piscium infections. This section also 
introduces these pathogens. 
 

 123  



FISH DISEASES - Diseases Caused By Bacterial Pathogens In Inland Water - Hisatsugu Wakabayashi, Terutoyo Yoshida, Tetsuichi 
Nomura, Toshihiro Nakai, Tomokazu Takano 

©Encyclopedia of Life Support Systems (EOLSS) 

 
 

Figure 1.1. Streptococcus agalactiae infection in wild fish in the Kuwait bay (Photo 
courtesy of Prof. M. Endo, Tokyo University of Marine Science and Technology) 

 
1.3. S. agalactiae (= S. difficilis), a Disease Agent 
 
S. agalactiae belongs to the Lancefield group B serotype. In general, Lancefield group B 
streptococci are synonymous name as S. agalactiae. Previously identified as 
non-hemolytic S. difficilis (=S. difficile. Eldar et al., 1994) and mainly isolated from 
tilapia, it was originally described as a non-typable Lancefield serological group. Later, S. 
difficilis (=S. difficile) was found to belong to Lancefield group B and capsular 
polysaccharide antigen type Ib (Vandamme et al., 1997), and this bacterial classification 
was proposed as a later synonym of S. agalactiae (Kawamura et al., 2005) 
 
S. agalactiae (= S. difficilis) infections are found in many freshwater and marine fish 
species (Evans et al., 2002; Mian et al.; 2009; Geng et al., 2012). In particular, S. 
agalactiae exhibited high virulence during infection trials in Nile tilapia Oreochromis 
niloticus, which is an important cultured freshwater fish (Mian et al., 2009). S. agalactiae 
isolates from fish were positive for hippurate hydrolysis and the Voges-Proskauer 
reaction. The isolates were negative for the pyrolidonyl arylamidase reaction and 
hydrolysis of urea and starch. Acid was produced from ribose, but not from sorbitol, 
mannose, and xylulose. Hemolytic (beta) and non-hemolytic strains were isolated from 
fish (Evans et al., 2008). Streptococcosis in tilapia aquaculture is mainly caused by S. 
agalactiae and S. iniae. These strains are distributed in several countries. Table 5.1 in the 
section on S. iniae Diseases caused by Bacterial Pathogens in Saltwater: Saltwater 
Streptococcosis) shows the different bacteriological characteristics between S. agalactiae 
and S. iniae. 
 
1.4. Diagnostic Methods  
 
1.4.1. Serological Classification 
 
S. agalactiae (= S. difficilis) from fish possess a Lancefield serological group B antigen 
and capsular serotype Ib antigen (Vandamme et al., 1997). Evans et al (2008) reported 
that fish isolates (serotype previously unreported in group B Streptococcus) from several 
countries (Kuwait, Brazil, Israel and USA) were typed as capsular serotype Ia. The ability 
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of BioStar STREP B Optical ImmunoAssay (STREP B OIA, a BioStarROIARStrep B 
assay kit; BioStar Incorporation, Louisville, CO, USA) to identify GBS isolated from 
aquatic animals was evaluated and found to be useful for identifying GBS strains cultured 
or directly collected from clinically infected fish (Evans et al., 2010).  
 
1.4.2. Clinical Signs and Pathogenicity 
 
The virulence of S. agalactiae isolated from fish, bovine, and humans was investigated in 
Nile tilapia. Some strains isolated from fish, bovine, and humans caused 
meningoencephalitis in the fish (Pereira et al., 2010). Fish infected with GBS may swim 
erratically and spirally, and exhibits darkened coloration. Exophthalmia and corneal 
opacity are typical clinical signs of infected fish. Periocular and intraocular hemorrhage 
was also observed in some infected fish (Bowater et al., 2012) (Figure 1.2). In 
experimental infections, septicemia with severe mononuclear infiltration was found in the 
meninges, epicardium, and eye (Filho et al., 2009). 
 

 
 

Figure 1.2. Affected fish showing intraocular hemorrhages (Photo courtesy of Prof. M. 
Endo, Tokyo University of Marine Science and Technology) 

 
1.4.3. PCR for Identification 
 
Several PCR assays targeting species-specific regions of S. agalactiae 16S rRNA (Shome 
et al., 2011) for multiplex PCR assay and 23S rRNA have been developed (Kawata et al., 
2004). 
 
1.4.4. Molecular Classification 
 
A high similarity was observed in whole genome DNA-DNA hybridization between S. 
agalactiae and S. difficilis (Kawamura et al., 2005). The genetic relatedness of fish, 
dolphin, human, and bovine GBS strains isolated from different geographical regions was 
examined using multilocus sequence typing (Evans et al., 2008). Phylogenetic trees of 
house-keeping genes (gyrB, sodA, gyrA, and parC) revealed that fish isolates of S. 
difficilis and S. agalactiae composed one cluster in which other pyrogenic Streptococcus 
species isolated from animals were not included (Kawamura et al., 2005).  
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1.4.5. Genome Analysis 
 
Recently, S. agalactiae STIR-CD-17 genome was submitted to NCBI. The non-hemolytic 
strain was isolated from a moribund fish during a disease outbreak in farmed tilapia 
(Oreochromis sp.) in Honduras in 2008. The draft genome sequence of STIR-CD-17 has 
been deposited in GenBank under the accession number ALXB00000000 (Delannoy et 
al., 2012). 
 
1.5. Control 
 
1.5.1. Vaccine 
 
An oil-adjuvant vaccine against S. agalactiae serotype II (Ib) was commercialized for 
tilapia and other susceptible species in Brazil and Indonesia 
(http://www.merk-animal-health.com/news/). A concentrated extracellular product 
(ECP) vaccine for S. agalactiae was developed for 30-g tilapia to induce 
antibody-mediated immunity through intraperitoneal and bath immersion administration 
(Evans et al., 2004). 
 
1.5.2. Vagococcus Salmoninarum 
 
V. salmoninarum infection is an emerging disease in European trout farms (Daly, 1999). 
The genus Vagococcus is motile, similar to the genus Lactococcus, and a new species has 
been proposed as V. fluvialis (Collins et al., 1989). Atypical lactobacilli isolated from 
diseased salmonid fish were identified as Vagococcus spp. Analysis of 16S rRNA 
sequence data clearly indicated that atypical lactobacilli isolated from fish were 
phylogenetically closer to the genera Enterococcus and Vagococcus than to the genus 
Lactobacillus. Atypical fish lactobacilli strains were found to belong to the genus 
Vagococcus and a new species different from V. fluvialis was identified as V. 
salmoninarum (Wallbanks et al., 1990). Wallbanks et al. (1990) reported a detailed 
description of V. salmoninarum isolated in USA. Schmidtke and Carson (1994) also 
reported on V. salmoninarum isolated in Tasmania, Australia, and Norway, in addition of 
new finding data to the report by Wallbanks et al. (1990). 
 
V. salmoninarum grows at 5°C and 30°C, but not at 40°C; it produces acid from 
amygdalin, cellobiose, fructose, glucose, maltose, mannose, salicin, starch, sucrose, and 
trehalose; it produces H2S and its G+C content was between 36.0 and 36.5 mol% 
(Wallbanks et al., 1990). Salmonid strains exhibited α-hemolysis on sheep’s blood agar 
and grew at pH 9.6, 10� and in 4% NaCl w/v, but not 6.5% NaCl. Lancefield serological 
group D and N antigens were not detected. V. salmoninarum could be differentiated from 
similar fish pathogens including L. garvieae (=Enterococcus seriolicida ) and L. piscium 
(Schmidtke and Carson,1994). 
 
1.5.3. Pathogenicity 
 
Vagococcosis occurs at lower water temperatures (10°C−12°C) compared to other 
streptococcosis (Michel et al., 1997). V. salmoninarum causes chronic infections and drug 
treatments were ineffective in rainbow trout. Hyperemia and hemorrhage occurred in 
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cardiovascular lesions in the gills and viscera of infected rainbow trout (Michel et al., 
1997). 
 
1.5.4. L. Piscium 
 
A lactic acid bacterium of uncertain taxonomic position isolated from diseased salmonid 
fish was identified as L. piscium (Williams et al., 1990). Chemical and molecular 
taxonomic studies such as fatty acid analysis, DNA base composition, and 16S rRNA 
sequencing were performed on a typical unknown lactic acid bacterium isolated from 
diseased salmonid fish and related bacteria including Vagococcus spp. (V. fluvialis and V. 
salmoninarum). Based on these results and detailed bacteriological charcteristics, these 
unknown bacteria were proposed to comprise a new species, L. piscium sp. nov. 
(Williams et al., 1990). Williams et al. (1990) reported L. piscium as follows: (1) its cell 
shape was either short rod-like or ovoid; (2) it could grow at 5°C and 30°C, but not at 
40°C; (3) it could not produce H2S; and (4) its G+C content was 38.5 mol%, as 
determined by melting temperature.  
 
1.6. Recent Topics 
 
1.6.1. Emerging Streptococcosis 
 
Mortalities of channel catfish (Ictalurus punctatus) brood stock caused by unidentified 
streptococcal infections have been observed at several aquaculture sites in the Mississippi 
Delta. The main causes of mortality were arthritis, osteolysis, myosis, and spinal 
meningitis. DNA-DNA hybridization, 16S rRNA analysis, and other biochemical tests 
revealed the causative agents belonged to the genus Streptococcus, and a new species, S. 
ictaluri, was proposed by Shewmaker et al. (2007). 
 
2. FURUNCULOSIS 
Tetsuichi Nomura 
 
2.1. Synopsis 
 
Furunculosis, caused by the Gram-negative, non-motile, fermentative, rod-shaped 
bacterium, Aeromonas salmonicida, is one of the most serious infectious diseases of wild 
and farmed salmonids. The disease was first described 120 years ago from trout hatchery 
in Germany. Since that time, the disease and its etiological agent have been found in most 
salmonid hatcheries and many wild populations throughout much of the world. The 
pathogen can be readily isolated from kidney tissues of dead or moribund fishes using 
commercial media. Oral administration of antimicrobial compounds is useful for control. 
For prevention of this disease, vaccines are used. In spite of considerable knowledge of 
chemotherapy and control, furunculosis continues to be a major problem in hatcheries. 
 
2.2. Introduction  
 
Furunculosis, caused by the bacterial pathogen, Aeromonas salmonicida, is a globally 
important disease affecting wild and cultured stocks of salmonids and other fish species. 
Furunculosis was first described in the 18th century in a brown trout hatchery in Bavaria, 
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Germany where the manifestations of the disease included furuncule-like swellings and, 
at a later stage, ulcerative lesions on infected trout (Bernoth, 1997). The common name of 
the disease is derived from the presence of “blisters” or furuncles on the surface of 
chronically infected salmonids. After the initial description, numerous reports in the 
literature described the epizootiology and control of the disease (Schachte, 2002; Toranzo 
et al, 2005; Cipriano and Bullock, 2001) and the ability of both “typical” and “atypical” 
strains of the bacterium to cause disease (Wiklund and Dalsgaard, 1998). In spite of 
considerable knowledge of chemotherapy and control, furunculosis continues to be a 
major problem in hatcheries.  
 
2.3. Host Range 
 
Furunculosis occurs in many species of salmonid fish in freshwater and seawater, but the 
level of susceptibility is variable (Bernoth, 1997; Cipriano and Bullock, 2001). For 
example, among salmonids, susceptibility to infection is reported to be low in rainbow 
trout, while brook trout, brown trout and many other salmon species appear to have a high 
susceptibility. In addition, susceptibility may vary within the same fish species raised 
from different genetic lines, age or with different histories of exposure to the various 
subspecies of A. salmonicida. In Atlantic salmon farms, a high percentage of the fish 
losses are attributable to furunculosis. Spawning and smolting fish are prime victims of 
furunculosis due to their compromised immune status according to Department of 
Agriculture, Fisheries and Forestry (2009). 
 
2.4. Disease Agent 
 
The most important aetiological agent of furunculosis in salmonids is Aeromonas 
salmonicida subsp. salmonicida, which is commonly known as the “typical” strain of A. 
salmonicida and is probably the most commonly encountered bacterial pathogen in 
salmonids. 
 
Characteristics: The pathogen was first described by Griffin et al. (Griffin et al, 1953). 
Since that time a number of subspecies of A. salmonicida have been recognized, although 
the taxonomy of the species is far from settled. Although Bergey's Manual of Systematic 
Bacteriology recognizes five subspecies of A. salmonicida: salmonicida, achromogenes, 
masoucida, smithia, and pectinolytica, many laboratories currently classify A. 
salmonicida subsp. salmonicida as "typical" and any isolate deviating phenotypically as 
"atypical". A. salmonicida’s ability to infect a variety of hosts, multiply, and adapt, make 
it a formidable pathogen (Martin-Carnahan and Joseph, 2005). A．salmonicida subsp. 
salmonicida comprises non motile, fermentative, gram-negative rods, typically 1µm x 
2µm, cytochrome oxidase positive which produce a brown water-soluble pigment on 
tryptone-containing agar, do not grow at 37˚C, and produce catalase and oxidase. Other 
subspecies of A. salmonicida do not produce this brown pigment. Some strains of A. 
salmonicida may be cytochrome oxidase negative, a result that is inconsistent for this 
species. The history of the organisms reveals a plethora of synonyms including: Bacillus 
devorans, Bacterium salmonica, Bacterium salmonicida, Bacillus truttae, Bacillus 
salmonicida and Hemophilus piscium (Austin, 2011). 
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Figure 2.1. Colonies of Aeromonas salmonicida subsp. salmonicida growing on 
trypticase soy agar, showing water soluble brown pigment. 

 
2.5. Genome Size 
 
A. salmonicida subsp. salmonicida A449 consists of a single circular chromosome, two 
large plasmids and three small plasmids. The 4,702,402 bp chromosome has a G+C 
content of 58.5% and contains 4388 genes, with 4086 encoding proteins (Reith et al, 
2008).  
 
2.6. Serological Classification 
 
A. salmonicida subsp. salmonicida can be defined as biochemically, antigenically, and 
genetically homogeneous with no biotypes, serotypes or genotypes being detected.  
 
2.7. Pathogenesis 
 
Virulence mechanisms of this pathogen fall broadly into two categories, these being 
cell-surface structures and extracellular products (ECPs) excreted by the cell.  
 
Early studies of the molecular properties of A. salmonicida reported the presence of a 
special surface protein array called the A-layer or S-layer, which was responsible for the 
bacteria’s virulent traits, and the presence of lipopolysaccharide (LPS), the cell’s major 
cell envelope antigen. The A-layer is mainly composed of a 50Kd protein called 
A-protein and provides protective barrier against the defense mechanism of fish hosts. 
The LPS consists of three moieties; lipid A, core oligosaccharide and O-polysaccharide 
(o-antigen). 
 
Since clinical signs of furunculosis are readily produced in fish injected with ECPs 
produced during the growth of A. salmonicida, an extensive body of research exists on 
mechanisms of virulence associated with this pathogen. The extracellular products of the 
pathogen consist of 25 proteins, enzymes and toxins and many more. 
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2.8. Diagnostic Methods 
 
2.8.1. Clinical Signs 
 
Furunculosis is an acute to chronic condition, with a variety of clinical signs. The disease 
generally appears to develop as a septicaemia and is often fatal. Affected fish often show 
darkening of skin, lethargy and inappetence. Haemorrhages may occur at the base of fins 
and the abdominal walls, heart and liver. Enlargement of the spleen and inflammation of 
the lower intestine are common features of chronic infections, but in acute outbreaks the 
fish may rapidly die without showing many signs.  
 

 
 

Figure 2.2. Furunculosis in rainbow trout; note the furuncle cut away to show the 
underlying necrotic tissue. 

 
2.8.2. Incubation Period 
 
At 14˚C, the period from exposure of susceptible fish to this pathogen by cohabitation 
with infected fish to bacterial shedding can be as short as three days, death can occur as 
soon as two days later (i.e. at five days post-exposure). At low temperatures, the time 
between infection and death may be prolonged. This may be due to the effects of 
temperature on pathogen multiplication and host defense mechanisms (see Department of 
Agriculture, Fisheries and Forestry, 2009). 
 
2.8.3. Histopathology 
 
In sub acute/chronic infections the heart and spleen are often the most infected organs; 
microcolonies occur in vascular endothelia with massive destruction of spleen ellipsoids, 
resulting in vascular collapse; damage to spleen ellipsoids that may be accompanied by 
reticular cell proliferation and lymphocyte accumulation. There is degeneration of 
cardiac ventral epicardium and toxic cardiac necrosis, especially of the atrial lining with 
damage to spleen and heart. 
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2.8.4 Definitive Diagnosis 
 
Presumptive diagnosis of typical A. salmonicida infections in salmonids is easier than the 
diagnosis of atypical furunculosis because clinical signs in the typical form are more 
stable and lesions are often not contaminated with opportunistic fungi and bacteria. 
Definitive diagnosis of furunculosis requires isolation and identification of the pigmented, 
typical strain of A. salmonicida. The pathogen can be readily isolated from kidney tissues 
of dead or moribund fishes using commercial media such as trypticase soy agar or 
brain-heart infusion agar plates incubated at 20-25˚C. Colonies of A. salmonicida subsp. 
salmonicida on these media will appear hard, friable, smooth and dark in color. After 24 
hours of growth, the bacterial colonies will reach about the size of a pin point. The 
colonies also have a brown pigmented color that appears after they have been growing for 
48-72 hours. Differentiation of colonial types that grow upon primary isolation can be 
facilitated by the simple addition of 0.1% (weight: volume) Coomassie Brilliant Blue 
(CBB) R-250 into either of the aforementioned media (CBB agar). When cultured on 
CBB agar, the A-layer protein that is present in virulent strains of A. salmonicida will 
absorb the CBB protein-specific dye. Consequently, virulent A. salmonicida develop dark 
blue to deep violet, friable colonies on CBB agar (Cipriano and Bullock, 2001). The API 
20E rapid identification system has been widely used for identification of A. salmonicida 
subsp. salmonicida (Popovic et al, 2007). 
 
2.9. Serological Identification 
 
While cultural and biochemical characteristics produce good results, more rapid 
serological procedures include: serum agglutination, fluorescent antibody, or enzyme 
linked immune sorbent assay (ELISA) using infected tissues or isolated bacteria (Austin 
and Austin, 2012). 
 
2.10. Molecular Identification 
 
The slow growth characteristics of this bacterium, the existence of a viable, but 
non-culturable state, as well as the high incidence of covert infections, support the need 
for culture-independent, molecular diagnostic protocols (Gustafson et al, 1992). Using 
PCR and a specific DNA probe, the existence of A. salmonicida was reported in effluent, 
water, faces and sediment from fresh water Atlantic salmon farm. Although the highest 
specificity in the detection of A. salmonicida is obtained when the PCR assay is directed 
to the amplification of the surface A-layer gene, recent studies allowed the design of new 
primer sets targeted to the gene fstA (coding for an outer membrane siderophore-receptor), 
which showed a total specificity for A. salmonicida isolates (Beaz-Hidalgo and Figueras, 
2012). 
 
2.11. Control 
 
Control methods for this disease have involved use of good husbandry practices 
(including good water quality, adequate disinfection of equipment and eggs, and lower 
stocking densities), disease-resistant fish stocks, improved diets, nonspecific immune 
stimulants, antimicrobial compounds, probiotics (micro-organisms that exert a beneficial 
effect on the host) and vaccines.  

 131  



FISH DISEASES - Diseases Caused By Bacterial Pathogens In Inland Water - Hisatsugu Wakabayashi, Terutoyo Yoshida, Tetsuichi 
Nomura, Toshihiro Nakai, Tomokazu Takano 

©Encyclopedia of Life Support Systems (EOLSS) 

In the laboratory, typical A. salmonicida can be shown to be sensitive to a wide range of 
antimicrobial chemotherapeutants. Oral administration of these antimicrobial compounds 
is useful for control. Terramycin (oxytetracycline) should be added to feed at the rate of 
3.0 g/100 lb fish, administered daily for 10 days to affected fish. Sulfamerazine should be 
administered at the rate of 5-10 g/100 lb fish and fed for 10 or 15 consecutive days 
(Schachte, 2002). 
 
2.12. Prevention 
 
Regular monitoring programs that detect A. salmonicida in the water supply and provide 
early non-lethal detection in mucus can be coupled with topical disinfection or antibiotic 
regimens that either preclude or minimize infection. 
 
If eggs must be imported from outside of the hatchery system, insist that only eggs 
supplied from inspected and certified furunculosis-free sources be used. United States 
Fish and Wildlife Service regulations recommend that eggs should be disinfected by 
submersion for PVP-iodine after fertilization. If eggs are then shipped to another facility 
for incubation, policy requires that those eggs undergo a secondary disinfection using the 
same agent (USFWS, 1995). In practice, conduct of the stress induced furunculosis assay 
and regulatory confinement of infected smolts have reduced the number of furunculosis 
outbreaks associated with early marine culture. 
 
2.13. Vaccine 
 
Vaccination leads to the production of antibodies against both cellular and soluble 
antigens of A. salmonicida. Vaccination also stimulates cellular immunity. Most vaccines 
use oil-based adjuvants because they confer superior protection and duration of immunity 
compared to other adjuvants. The best results in terms of protection have been reported in 
salmonids with the mineral oil-adjuvanted vaccines; however, these bacterins posses 
several adverse side-effects. To avoid these drawbacks, new non-mineral oil-adjuvanted 
vaccines have been recently developed. However, recombinant DNA technology allowed 
the construction of highly attenuated and stable aroA auxotrophic mutant strains (using an 
allelic replacement technique), which were employed experimentally as safe live 
vaccines with high success. Approval of this method for field use has not yet been given 
(Press et al, 1996).  
 
2.14. Recent topics 
 
Although biotechnology is employed in the detection and control of furunculosis, there is 
still need for rapid, reliable and easy diagnostic systems suitable for covert carrier fish 
and field use (Austin, 1997). There is evidence to suggest that distribution and 
transmission of many pathogenic bacteria will increase with global warming. Few studies 
have tried to predict the impact of this phenomenon on A, salmonicida (Tam et al, 2011). 
Advancement in disease control measures is expected, particularly the use of probiotics, 
non specific immunostimulants such asβ-1, 3-Glucans and oral vaccines. 
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Glossary 
 
LPS:  Lipopolysaccharide 
ECPs:  Extracellular products 
CBB:  sCoomassie brilliant blue 
 
3. BACTERIAL GILL DISEASE 
Hisatsugu Wakabayashi 
 
3.1. Synopsis 
 
Bacterial gill disease (BGD) caused by Flavobacterium branchiophilum has been 
reported from various cultured freshwater fish species, in particular  salmonids, 
worldwide. The bacterium is Gram-negative slender rods measuring 0.5 × 5-8 µm that are 
non-motile and showed neither gliding movement nor swarming growth on cytohaga agar 
(CA). When an outbreak of BGD occurs, F. branchiophilum first appears abundantly on 
the surfaces of the gills. A proliferative hyperplasia develops in the epithelium and 
progresses to clubbing and fusion of gill lamellae. Several chemical disinfectants 
including sodium chloride have been used to treat BGD. When the bacteria on the gills 
are removed by treatment at the early stage of infection, fish recover rapidly.  
 
3.2. Introduction 
 
Bacterial gill disease (BGD) is characterized by the presence of numerous filamentous 
bacteria on the surface of the gill epithelium. Davis (1926, 1927) first observed it in fry 
and fingerling brook trout (Salvelinus fontinalis) and rainbow trout (Oncorhyncus mykiss) 
in hatcheries in Vermont, USA. He called the condition bacterial gill disease, but did not 
attempt to isolate or identify the bacteria. Rucker et al. (1952) and Bullock (1972) isolated 
several strains of yellow-pigmented bacteria, referred to myxobacteria from infected gill 
tissue but none could be shown to be the causative agent. Kimura et al. (1978) and 
Wakabayashi et al. (1980) isolated a different yellow-pigmented bacterium from gill 
lesions of several species of salmonids in Japan and USA, and experimentally produced 
BGD with this organism. The bacterium was named Flavobacterium branchiophila by 
Wakabayashi et al. (1989). Later, this name was corrected to F. branchiophilum by von 
Graevenitz, (1990). BGD with F. branchiophilum has been reported from various 
cultured freshwater fish species, especially salmonids, in Japan, USA, Hungary (Farkas 
1985), Canada (Ferguson et al. 1991, and Korea (Ko and Heo 1997). Probably the cause 
of most BGD outbreaks in salmonids is F. branchiophilum (Bullock 1990, Turnbull 1993). 
However, similar pathology could result from the presence of a low grade opportunist 
pathogen in extreme environmental conditions, or the presence of a highly pathogenic 
bacterium in marginal environmental conditions (Turnbull 1993).  
 
3.3. Disease Agent  
 
3.3.1. Flabobacterium Branchiophilum 
 
Cells of F. branchiophilum from cytophaga broth (CB) (Anacker and Ordal 1959) are 
Gram-negative slender rods measuring 0.5 × 5-8 µm and usually occurred in chains of 
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two or three cells (Figure 3.1). They are non-motile and showed neither gliding 
movement nor swarming growth on cytohaga agar (CA). Growth on CA is slow and 
colonies are rarely visible in less than 2 day incubation. They are light yellow, round, 
transparent, smooth and 0.5 – 1 nm in diameter after incubation for 5 days at 18°C. The 
bacteria grow well at 10 to 25°C and in the presence of 0.25% NaCl or in the absence of 
NaCl. Some strains are also able to grow at temperatures as low as 5°C and as high as 
30°C  and in the presence of higher concentrations of NaCl (0.05 to 0.1%).  
 

 
 

Figure 3.1. Electron micrograph of negative stained cells of Flavobacterium 
branchiophilum ATCC35035T. Bar – 1 µm. 

 
Wakabayashi et al (1989) described the biochemical characteristics of 16 strains from 
Japan, USA and Hungary as follows. All strains produced catalase and cyctochrome 
oxidase, and hydrolyzed gelatin, casein, and starch. They were negative for production of 
hydrogen sulfide and indole, reduction of nitrate, and degradation of chitin. Some of the 
strains tested were unable to grow in test medium for nitrate reduction. Also, there was no 
growth on DNase medium. In the cellulose digestion test, the bacteria grew on the surface 
of the filter paper, but disintegration of the strip did not occur. Acid but no gas was 
produced from plucose, fructose, sucrose, maltose, trehalose, cellobiose, melibiose, 
raffinose, and inulin, but not from galactose, lactose, arabinose, xylose, rhamnose, 
adonitol, mannitol, dulcitol, sorbitol, inositol, or salicin. The DNA G+C contents of three 
of the strain ranged from 29 to 31 mol% (mean, 30%). These characteristics accord with 
those of F. branchiophilum strains from Canadian salmonids with BGD (Ostland et al. 
1994). However, Bernardet et al (1996) reported a G+C content range of 33-34 mol%. 
The strains isolated in Japan, USA, Canada, and Hungary possessed common antigens 
detectable by agglutination and precipitation tests (Wakabayashi et al. 1980, Huh and 
Wakabayashi 1989, Ostland et al. 1994). However, the Japanese strains were 
distinguished from USA and Hungarian strains by agglutinin-adsorption tests, and the 
precipitation tests revealed one antigen specific for Japanese strains and two antigens 
specific for both USA and Hungarian strains (Huh and Wakabayashi 1989).  
 
Negative-stained preparation of F. branchiophilum cells demonstrated fimbriae-like 
appendages extending from their surface (Wakabayashi et al. 1989, Ostland et al. 1994). 
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Ototake and Wakabayashi (1985) found that the infectivity of the bacteria was 
significantly reduced by a mechanical agitation of the bacterial suspension with a blender. 
The adherence of the bacteria to the gill tissue surface was thought to be mediated by 
fimbriae (pili), but the hemagglutins contained in the supernatant of the agitated bacterial 
suspension were non-fimbrial agglutinin (Ototake and Wakabayashi 1985). Heo et al. 
(1990) tried to purify and characterize the fimbriae of F. branciophilum ATCC35035T. 
The fimbriae mechanically detached from the bacterial cells were purified by using 
ion-exchange chromatography on DEAE-cellulose. A main purified fimbrial subunit had 
a molecular weight of 23,000 dalton and a maximum absorption at 276 nm in ultraviolet 
absorption spectrum. In serological analysis, four strains of F. branchiophilum produced 
a single common precipitin line against rabbit anti-fimbriae serum. Although a significant 
reduction in the attachment of F. branchiophilum strains was not achieved after 
immersion of fish in the crude fimbrial extracts (CFEs), it was suggested that inhibition 
by CFE was dose dependent (Ostland et al. 1997).  
 
In virulence studies with eight selected strains of F. branchiophilum strains, Ostland et al. 
(1995) found that all of the strains were fimbriated and adhered to the gills of rainbow 
trout, but that only five strains succeeded in proliferating and further colonizing the gills 
to cause mortality. They suggested that an additional virulence factor(s) might facilitate 
bacterial proliferation resulting in further branchial colonization, to induce mortality. 
Kudo and Kimura (1983c), and Ototake and Wakabayashi (1985) reported that F. 
branchiophilum produced an extracellular hyperplasia inducing factor which could 
reproduce lesions histopathologically similar to those in BGD.  
 
3.4. Other Bacteria Associated with BGD 
 
Thunbull (1993) summarized phenotypic characteristics of bacteria recovered from BGD. 
In addition, Ostland et al. (1999) reported a new form of BGD affecting intensively reared 
salmonids in Ontario Canada. The outbreaks occurred at water temperature less than 
10 ℃. Shorten and somewhat stubby lamellae covered with swollen epithelial cells 
occurred in the sequel to infection, while overt epithelial hyperplasia, lamellar fusion and 
filamental clubbing were not common. The predominant bacterium recovered from 
affected gills was a short, Gram-negative rods which shared phenotypic characteristics 
with Pseudomonas fluorescens. An attempt to reproduce using the isolates was 
unsuccessful. 
 
3.5. Diagnostic Methods 
 
Diseased fish become suddenly lethargic and anorexic. They remain near the water 
surface or gather at the inflow site. Opercula of these fish are bilaterally flared with an 
irregularly eroded margin. Respiratory rates are markedly increased, and some fish 
exhibit labored and accentuated use of the buccal and opercular pumps (Spear and 
Ferguson 1989). A proliferative hyperplasia develops in the epithelium of the gill 
lamellae. As the disease progresses, the epithelium proliferates, causing clubbing and 
fusing of gill lamellae (Bullock 1990). The hyperplasia is usually seen first at the distal 
tips of the lamellae. Bacterial colonization begins at these lamellar tips before spreading 
proximally (Wood and Yasutake 1957, Kudo and Kimura 1983a, Spears et al. 1991a). The 
relationship between the severity of lamellar lesions and the abundance of bacteria is not 
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always clear since, in some cases, the bacteria are more numerous in less severely 
affected areas of the gills (Daoust and Ferguson 1983). However, Ostland et al. (1990) 
reported that statistical analysis on the severity of lesions and bacterial recovery indicated 
a strong association between the severity of lesions and the presence of filamentous 
bacteria.  
 
Wakabayashi et al. (1980) made a scanning electron microscopic observation of the gill 
filaments following bath challenge of juvenile rainbow trout with pure cultures of F. 
branchiophilum. All of the cultures were able to establish abundant growth on the surface 
of the tissues within 18 to 24 hours (Figure3.2 and 3.3). The gill epithelium assumed 
hyperplastic appearance 4 days after exposure, though the bacterial cells decrease in 
number on the surface of the gill filaments. The general pathology of BGD is most likely 
caused by restrictions on the respiratory and excretory functions of the gills (Snieszko 
1981). The oxygen response thresholds for fish experimentally infected with F. 
branchiophilum were 1.5 – 2.5 times higher than those of uninfected fish, and their 
respiratory functions seemed to be impaired 2 days after infection and became worse after 
5 days (Wakabayashi and Iwado 1985a). Changes in glycogen, pyruvate and lactate 
concentrations in the muscle tissue of juvenile rainbow trout with BGD suggested that a 
breakdown in gas exchange at the gills caused the failure in circulation to provide oxygen 
enough to remove excess lactate from the muscle, even though the level of muscle lactate 
was not so high as that of healthy fish (Wakabayashi and Iwado 1985b).  
 

 
 

Figure 3.2. Scanning electron micrograph of Flavobacterium branciophilum and lamellae 
18 hours after exposure of a rainbow trout fingerling to the bacterial suspension in an 

aquarium. 
 

Because outbreaks of BGD occur suddenly, the disease usually cannot be diagnosed until 
mortalities begin. Diagnosis is based on the clinical signs along with the examination of 
wet mounts of the gill tissue for hyperplasia and the presence of filamentous bacteria. 
Phase contrast microscopy is recommended for enhanced observation of wet mount gill 
filaments. The causative agent is identified as F. branchiophilum by isolation and 
application of definitive biochemical tests. But F. branchiophilum is usually not isolated 
from internal organs. 
 
A fluorescent antibody test (FAT) was used to detect from infected fish and their 
environment in a trout hatchery (Huh and Wakabayashi 1987, Heo et al. 1990)). An 
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enzyme-linked immunosorbent assay (ELISA) was developed to estimate the quantity of 
F. branchiophilum in crude gill extracts from rainbow trout following bath exposure to 
the bacterium (MacPhee et al. 1995a, Ostland et al. 1995). Toyama et al. (1996) reported 
that the PCR with a pair of a specific primer BRA1 and a universal primer 1500R 
succeeded in specifically amplifying 16S rDNA from F. branchiophilum.  

 

 
 

Figure 3.3. Transmitting electron micrograph of Flavobacterium branchiophilum cells on 
the gill epithelium 18 hours after exposure of a rainbow trout fingerling to the bacterial 

suspension in an aquarium. 
 
3.6. Control 
 
According to Bullock (1990), several chemical disinfectants have been used to treat BGD 
in salmonid hatcheries in the USA. The most widely used are quarterly ammonium 
compounds, such as benzalkonium chlorides. Another chemical is the herbicide Diquat. 
However, none of these chemicals are approved by the U. S. Food and Drug 
Administration for disease control in food fishes. Efforts are under way to have 
chloramine-T registered as a treatment for BGD (Bullock et al. 1991, Bowker and Garty 
2008, 2011). Hydrogen peroxide (H2O2) represents a more environmentally friendly 
alternative because of its low regulatory priority (Lusmsden et al. 1998, Derksen et al. 
1999). Rach et al. (2000) reported that two static bath treatment regimens were effective 
in the control of BGD: H2O2 administered at concentrations of 56 – 110 mg/L as a 60 min 
exposure or H2O2 administered at a concentration of 56 – 230 mg/L as a 30 min exposure. 
Sodium chloride (NaCl) is widely employed to treat BGD in hatchery salmonids in Japan: 
NaCl is used at a concentration of 1 – 5 % as a 1 – 2 min bath. Kudo and Kimura (1983a, 
b) demonstrated that this treatment was very effective for the removal of bacterial cells 
and subsequent recovery. 
 
3.7. Recent Topics 
 
Touchon et al. (2011) reported the complete genome sequence of F. branciophilum strain 
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FL-15 isolated from a diseased sheatfish (Silurus glanis) in Hungary. The FL-15 genome 
encodes 20 predicted adhesion precursors that could be implicated in cell-cell and 
cell-surface interactions. However, no genes encoding known pilus or fimbrial proteins 
were identified in the FL-15 genome. The authors mentioned that, if present, the 
corresponding genes may be hidden within those encoding hypothetical proteins; it is also 
possible that production of pilus-like structures is a strain-dependent feature absent from 
strain FL-15. It is also interesting that the FL-15 genome contains two distinct groups of 
genes, gld and spr, which are involved in gliding motility. This suggests that F. 
branchiophilum may actually be motile, but experimental conditions used so far failed to 
mimic natural conditions where gliding motility is expressed.  
 
4. COLUMNARIS DISEASE 
Hisatsugu Wakabayashi 
 
4.1. Synopsis 
 
Columnaris disease, caused by Flavobacterium columnare, affects cultured, ornamental 
and wild-fish populations in freshwater worldwide. The disease is characterized by 
external infections in the fish body surface, gills or fins. The bacterial cells are long, 
flexible, Gram-negative rods that are motile by gliding. They grow well on low nutrient 
media producing pale yellow rizoid colonies. Traditional culture techniques require 
several days for a definitive diagnosis. Therefore, molecular techniques such as the 
polymerase chain reaction (PCR) have been used. Because F. columnare primarily attacks 
gills, skin and fins of fish, most treatments proposed for columnaris disease are 
surface-acting disinfectants used as baths. 
 
4.2. Introduction 
 
Columnaris disease was first described by Davis (1922), who observed it in warm-water 
fish from the Missisippi River, USA. Although Davis did not succeed in isolating the 
pathogen, he named it Bacillus columnaris because, when pieces of infected tissues from 
diseased fish were examined microscopically in wet mount preparation, column-like 
masses of the bacteria were observed along the periphery of the tissues (Figure 4.1). 
 
The etiological agent was first isolated by Ordal and Rucker (1944) from hatchery reared 
sockeye salmon (Oncorhynchus nerka) in the summer of 1943 and renamed 
Chondrococcus columnaris. At the same time Garnjobst (1945) isolated the organism 
from some warm water fishes and assigned it to the genus Cytophaga. The precise 
taxonomy of the agent has been the subject of continuing discussion (Leadbetter 1974, 
Reichenbach 1989). This taxonomical confusion was resolved when Bernardet et al. 
(1996) transferred the bacterium to the genus Flavobacterium (Bernardet and Bowman 
2011).  
 
Flavobactrium columnare, the causative agent of columnaris disease, is ubiquitous in 
freshwater environments and an opportunistic pathogen that causes skin and gill 
infections in freshwater fishes worldwide (Nigrelli and Hutner 1945, Wakabayashi and 
Egusa 1966, Anderson and Conroy 1969, Bowser 1973, Wobeser and Atton 1973, 
Bootsma and Clerx 1976, Fergson 1977, Morrison et al. 1981, Chun et al. 1985, 
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Bernardet 1989, Berno 1989, Koski et al. 1993, Figueiredo et al. 2005, Welker et al. 2005, 
Tien et al. 2012).  
 

 
 

Figure 4.1. Columnar formations of F. columnare along the margin of a piece of the 
tissue. 

 
4.3. Disease Agent 
 
Cytophaga agar (CA) (Anacker and Ordal 1959a) is the most frequently used medium for 
cultivation of F. columnare. It contains trypton 0.05%, yeast extract 0.05%, sodium 
acetate 0.02%, beef extract 0.02% and agar 0.9% and is adjusted to pH7.2-7.4. The 
colonies are of a spreading nature with irregular margins and they adhere to the agar. 
Under the microscope (×40), the edge of the colonies appeared rhizoid (Figure 4.2). F. 
columnare contains flexirubin type pigments, so that the colonies change their color from 
yellow to brown when flooded with 20% KOH solution. In static culture in cytophaga 
broth (CB) the bacteria form clusters or a pellicle of cells on the surface of the broth. 
When gently agitated, however, they usually grow homogeneously. 
 
The cells are Gram-negative, slender and rather long bacilli, 0.3 - 0.5 μm wide and 3 - 
8μm. The filamentous cells display an active flexing movement in wet mount preparation. 
They have no flagella but exhibit gliding motility on a wet surface. Bernaldet and 
Grimont (1989) described the physiological characteristics of eight strains of F. 
columnare isolated Europe, USA and Japan as follows. Growth occurs in CB 
supplemented with 0.1% or 0.5％ NaCl and at 10-33 C. Catalase and cytochrome oxidase 
are produced; nitrate is reduced to nitrite; hydrogen sulfide is produced. Cellulose, 
carboxymethyl cellulose, chitin, starch, aesculin and agar are not hydrolysed. No acid is 
produced from carbohydrates in ammonium salt-sugar medium. Gelatin, casein (skim 
milk agar), and tyrosine are hydrolysed. Lysine, arginine and ornithine are not 
decarboxylated. Tributyrin, lecithin (egg yolk), Tween 20, Tween 80 and DNA are 
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hydrolysed. These characteristics accord with those reported by other workers such as 
Garnjobst (1945), Wakabayashi et al (1970) and Bootsma and Clerx (1976).  
 

 
 

Figure 4.2. A colony of F. columnare growing on cytophaga agar, showing the rhizoid 
edges to the colony. 

 
The DNA base composition has been variously defined as between 29.8 and 35.9 mol % 
G+C (Mitchell), or 32.6 and 42.9 mol % G+C (Bootsma and Clerx 1976). According to 
Bernardet and Grimont (1989) the base composition of their strains were 32.0 and 33.2 
mol % G+C and the relatedness in DNA-DNA hybridization was more than 76%. Song et 
al. (1988) compared the isolates from Western North America and other areas of the 
Pacific Rim. They reported that the mol % G+C of the DNA was 29.6 - 32.5 and that 19 of 
the 22 strains were 81-98% homologous with their type strain isolated from fish in 
Oregon, USA. Triyanto and Wakabayashi (1999a,b) described three genomovars among 
the species based on the analysis of the 16S rDNA gene restriction fragment length 
polymorphisms (16S rDNA-RFLP). The 16S rDNA sequence provided enough 
variability to defined three genomovars within the species. Genomovar I is defined by the 
type strain IAM14301T (=ATCC23463T) isolated from Chinook salmon in USA and 
including 10 Japanese and 8 French strains from various fishes, a Chinese strain from 
grass carp (Ctenopharyngodon idella), and an Indonesian strain from common carp 
(Cyprinus carpio). Genomovar II is defined by EK28 (=IAM14820) isolated from eel 
(Anguilla japonica) in Japan and including a Japanese strain from loach (Misgurnus 
anguillicaudatus). Genomovar III is defined by a single strain PH97028 (=IAM14821) 
isolated from ayu (Plecoglossus altivelis) in Japan. Michel et al (2002) found that two 
neon tetra (Paracheirodon innesi) isolates and two blackmolly (Poecilia sphenops) 
isolates belonged to genomovar II, while all North American and French fresh water fish 
isolates belonged to genomovar I. They thought that genomovar II or Asian type strains 
might have been brought to Europe through ornamental fish imports. Two isolates from 
warm water fishes, i.e. catfish (Ictalurus sp.) and baitfish (Notropis sp.) in USA were 
added to the original Genomovar III isolate PH97028 (Scheck and Caslake 2006). 
Amplified fragment length polymorphism (AFLP) fingerprinting further subdivided the 
species without losing genetic hierarchy of genomovar division (Arias et al. 2004). 
Olivares-Fuster et al. (2007) reported that both the 16S - single strand conformation 
polymorphism (16S-SSCP) and the intergenic spacer region - single strand conformation 
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polymorphism (ISR-SSCP) improved resolution when compared with standard RFLP. 
The SSCP analysis of rRNA genes proved to be a simple, rapid, and most effective 
method for routine fingerprinting of F. columnare (Olivares-Fuster et al. 2007).  
 
Anacker and Ordal (1959b) reported that the strains isolated from fish in the USA 
possessed a common species specific antigen and several other antigens. On the basis of 
their antigenic composition, strains were separated into four serotypes and one 
miscellaneous group. However, no correlation between serotype, geographical origin, or 
species of host-fish and virulence was found.  
 
The difference in virulence among F. columnre strains was reported on the basis of 
experimental infection (Pacha and Ordal 1963). Some authors have suggested that one of 
the virulence factors of F. columnre is the extracellular proteases produced by the 
bacterium (Griffin 1991, Bertolini and Rohovec 1992, Teska 1993, Newton et al. 1997). 
Chondroitin lyase activity was found to be significantly related to the virulence of eight F. 
columnare strains (Suomalainen et al. 2006). Zhang et al. (2006) compared 
lipopolysaccharide (LPS) and total protein profiles from four F. columnare isolates and 
reported that it was possible to discriminate the attenuated mutant FC-RR strain from 
other virulent strains. Some researchers demonstrated the relationship between adhesion 
of F. columnare and virulence (Decostere et al. 1999ab, Olivares-Fuster et al. 2011), 
while others found no such association (Suemalainen et al. 2006, Kunttu et al. 2009).  
 
4.4. Diagnostic Method 
 
The first indication of the infection is generally the appearance of a white spot on some 
part of the head, gills, fins or body. This is usually surrounded by a zone with a distinct 
reddish tinge, leading to under-running of adjacent skin. Lesions on the gills or fins 
extend principally from the distal end towards the base, and the tissues are eroded and 
destroyed (Figure 4.3). Lesions are covered with a yellowish white mucoid exudate 
consisting largely of swarms of F. columnare. The bacteria are not usually found 
systemically until a relatively large amount of external skin or gill damage has taken 
place; thus it would appear that the bacteria enter the blood stream through the external 
lesions and are probably not directly involved in causing death (Wood 1979).  
 
High water temperature enhances the outbreaks of columnaris disease (Fish and Rucker 
1943, Ordal and Rucker 1944, Holt et al. 1975, Decostere et al. 1999, Suomalainen et al. 
2005a). Wakabayashi and Egusa (1972) studied the effect of water temperature on 
columnaris disease in loach. Fish were challenged by immersion in water containing F. 
columnare at about 106 cfu/ml, then held at temperatures ranging from 5 to 35 oC in 5 oC 
intervals. No mortalities occurred in fish held 5 or 10 oC, twenty five percent of those held 
at 15 C died and all of the exposed fish held at 20 - 35 oC died. The mean times to death 
were 7.0, 3.0, 1.8, 1.0 and 1.0 days at 15, 20, 25, 30 and 35 oC, respectively. During the 
period 1955 – 9, the incidence of columnaris disease in salmon, especially sockeye 
salmon, in the Columbia River Basin, increased with increasing water temperature (Pacha 
and Ordal 1970). Field surveys of Fraser River spawning areas in 1963, 1964, and 1965 
revealed that pre-spawning losses of sockeye salmon by columnaris disease in 1964 were 
comparatively very small (less than 5%) owing to the lower temperature in that year 
(Colgrove and Wood 1966). 
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Figure 4.3. Goldfish infected with F. columnare. Lesion on the periphery of gills and fins 
gradually extending towards the body surface. 

 
The influence of water quality on F. columnare infection has been studied by many 
authors. Fijan (1968) indicated that F. columnare could persist for long periods in water of 
high hardness and organic matter content. Survival and growth of F. columnare are 
affected by the ionic composition of water (Wakabayashi and Egusa 1972, Chowdhury 
and Wakabayashi 1988a,b). Columnaris disease did not occur in 3.0 or 9.0‰ salinity, and 
31–39% fewer channel catfish (Ictalurus punctatus), goldfish (Carassius auratus) and 
striped bass (Morone saxatilis) died in 1.0‰salinity than in freshwater (Altinok and 
Grizzle 2001). Hanson and Grizzle (1985) indicated that nitrite at a concentration of 5 
ppm enhanced F. columnare infection. Sugimoto et al. (1981) found that F. columnare 
grew very well on particles of fresh meal derived from the break-up of pelleted diets in 
water. In an experiment, transmission of columnaris disease to healthy fish was enhanced 
by adding a small quantity of feed pellets to an aquarium containing both diseased and 
healthy fish, but no transmission occurred without addition of the particulate feed matter 
(Sugimoto et al. 1981).  
 
Bacterial culture and biochemical characterization has been employed for diagnosis of 
columnaris disease. However, this traditional culture technique requires several days to 
complete. Immunological techniques such as agglutination test, enzyme-linked 
immunoassay (ELISA) (Shoemaker et al. 2003) and indirect fluorescent antibody test 
(Panangala et al. 2006) have been used for detection of F. columnare infection. Several 
researchers have developed identification methods for F. columnare using PCR targeted 
16S ribosomal DNA (Toyama et al. 1996, Bader et al. 2003). A PCR detection method 
based on the 16S-23S rDNA intergenic spacer region (IRS) of the ribosomal RNA operon 
was used for detection of F. columnare in channel catfish tissues and in tank water 
(Welker et al. 2005). Panangala et al. (2007) developed a multiplex PCR (m-PCR) for 
simultaneous detection of three bacterial fish pathogens, F. columnare, Edwardsiella 
tarda, and Aeromonas hydrohila in warm water aquaculture. In their study, they found 
that A. hydrophila outcompetes not only F. columnare but also E. ictaluri. 
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4.5. Control 
 
Environmental control along with good rearing practice might provide a means of 
controlling columnaris disease. Auxiliary cold water, if available, is extremely beneficial 
even if it cools the water by only a few degrees (Wood 1979). Both salt (4 and 2%) and 
acidic baths failed to prevent fish mortality, but the mortality rate was lower in rainbow 
trout treated with 4% salt bath compared to a control group (Suomalainen et al. 2005b). 
The incidence of F. columnare in fish might even be reduced by adding significant 
numbers of competitive bacteria susceptible fish ponds before F. columnare became 
established on the fish body (Chowdhury and Wakabayashi 1989, Sumalainen et al. 
2005c). Suomalainen et al. (2005a) showed that high rearing density, together with high 
temperature, were the main factors influencing mortality during a F. columnare outbreak. 
Shoemaker et al. (2003) demonstrated that in the absence of natural food juvenile channel 
catfish should be fed at least once every other day to apparent satiation to maintain 
normal physiological function and improve resistance to F. columnaris.  
 
An excellent review on chemotherapeutics and compounds which had been commonly 
used for treating columnaris disease was provided by Amend (1970). Heavy metals such 
as copper sulfate (CuSO4), potassium permanganate (KMnO4), PMA 
(pyridylmercuricacetate) were used for many years, but their use as therapeutants is now 
restricted in most countries including UK, Japan and USA because they accumulate in the 
tissues of treated fish. An immersion flush exposure of NH4Cl at 46.3mg/L (normally 
yielding 15mg/L total ammonia nitrogen) served to lower the channel catfish mortality 
caused by F. columnare (Farmer et al. 2011). Chloramine-T (n-chloro-para-toluene 
sulfonamide sodium salt) or Diqat (6,’-dihydrodipyrido 1,2-a: 2’, 1’-c pyrazidinium 
dibromide) have been used extensively for treating columnaris disease in the USA 
(Altinok 2004, Thomas-Jinu and Goodwin 2004, Darwish and Mitchell 2009). For 
systemic infections, sulfonamide or antibiotics are added to the food. Administration of 
florfenicol at a dosage of 10 or 15mg/kg body weight for 10 days was efficacious for the 
control of mortality from F. columnare infection in channel catfish (Gaunt and Gao 2010, 
Darwish et al. 2012). 
 
Studies on oral, parenteral and immersion vaccination of channel catfish against F. 
columnare were carried out but results were inconclusive (Schachte and Mora 1973). 
Moor et al. (1990) demonstrated the feasibility of immunizing channel catfish against 
columnaris disease by immersion vaccination with formalin-inactivated bacterins. A 
commercial vaccine against columnaris disease is available under the registered name 
Aquavac-Col (Intervet / Schering-Plough Animal Health) and the main active ingredient 
for the vaccine is a rifampin-resistant mutant of F. columnare (Olivares-Fuster and Arias 
2011). 
 
4.6. Recent Topics  
 
Shoemaker et al. (2008) carried out immersion challenge experiments to ascribe 
virulence of genomovar I and II isolates to channel catfish. Their results demonstrated 
that genomovar II (n = 4) isolates were significantly more virulent to channel catfish fry 
(92-100% mortality) than genomovar I (n = 3) isolates. Klesius et al. (2008) reported that 
genomovar II isolates were more strongly chemotactic to channel catfish mucus than 
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genomovar I isolates. Olivares-Fuster et al. (2011) demonstrated that the cells of a 
genomovar II strain adhered to channel catfish gill in higher numbers within 1 h 
post-challenge. It is plausible that genomovar II strains could more efficiently adhere to 
the epithelial tissues and mucus coverings of catfishes. However, further research is 
needed to confirm if all genomovar II strains are indeed more effective at colonizing gills 
of channel catfish than genomovar I strain (Olivare-Fuster et al. 2011). 
 
5. BACTERIAL COLD-WATER DISEASE 
Hisatsugu Wakabayashi 
 
5.1. Synopsis 
 
Bacterial cold water disease (BCWD) caused by Flavobacterium psychrophilum is a 
serious disease in freshwater fish, particularly salmonid fish and ayu, worldwide. The 
epizootics are most prevalent at low temperature. The bacterial cells are Gram-negative, 
slender rods measuring 0.5×2-7 �m, exhibiting weak gliding motility. The clinical signs 
of BCWD depend on the age of affected fish species. In coho salmon fingerlings, the 
erosion of tissue in peduncle area is a classic characteristic early in the epizootics. 
Chemotherapy with antibiotics is still the most effective treatment method, but acquired 
resistance of F. psychrophilum is a major challenge. Currently, there are no vaccines 
commercially available to prevent BCWD. 
 
5.2. Introduction 
 
Bacterial cold-water disease (BCWD) is caused by Flavobacterium psychrophilum 
(formerly Flexibacter psychrophilus and Cytophaga psychrophila). Davis (1946) 
described it as ‘peduncle disease’ based on the characteristic pathology that was 
associated with the peduncle of the diseased rainbow trout (Oncorhynchus mykiss) in 
West Virginia, USA. Although Davis could not isolate the causative agent, he observed a 
number of long thin bacteria within the lesions of affected fish. The etiologic bacterium 
was originally isolated from diseased coho salmon (Oncorhynchus kisutch) in Washigton, 
USA, in 1948 by Borg (1960). He proposed the name Cytophaga psychrophila for this 
organism. The disease became known as ‘bacterial cold-water disease’ or 
‘low-temperature disease’ because epizootics were most prevalent at low water 
temperature. 
 
BCWD was believed to be limited to North America until its outbreaks occurred among 
rainbow trout in Germany (Weis 1987) and France (Bernardet et al. 1988). In Europe, the 
disease is called as ‘rainbow trout fry syndrome’ (RTFS) (Lorenzenn et al. 1997), 
‘visceral myxobacteriosis’ (Baudin-Laurencin et al. 1989), or ‘fry mortality syndrome’ 
(FMS) (Lorenzenn et al. 1991). F. psychrophilum has been isolated in USA, Canada 
(Lumsden et al. 1996), Germany, France, UK (Santos 1992), Northern Ireland (Lorenzen 
et al. 1991), Denmark (Lorenzen et al. 1991), Spain (Toranzo and Barja 1993), 
Swizterland (Lorenzen and Olesen 1997), Finland (Wiklund et al. 1994), Norway 
(Lorenzen and Olesen 1997), Sweden (Madetoja et al. 2001), Estonia (Madetoja et al. 
2001), Turkey (Kum et al. 2011) , Japan (Wakabayashi et al. 1991), Korea (Lee and Heo 
1998), Australia (Schmidtke and Carson 1995), Chile (Bustos et al. 1995), Peru 
(Lindstrom et al. 2009). Although outbreaks commonly occur among salmonids, BCWD 
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also affects carp (Cyprinus carpio), crucian carp (Carassium carassius), eel (Anguilla 
anguilla), and tench (Tinca tinca) (Lehmann et al. 1991), ayu (Plecoglossus altivelis) 
(Wakabayashi et al. 1994), chub (Zacco platypus) (Iida and Mizokami 1996), gobies 
(Chaenogobius urotaenia and Rhinogobius brumneus), and dace (Trybolodon 
hakonensis) (Amita et al. 2000).  
 
The importance of BCWD has led to a significant volume of publications, which have 
been adequately reviewed by various authors (Wood 1979, Holt et al. 1993, Nematollahi 
et al. 2003a, LaFrentz and Cain 2004, Cipriano and Holt 2005, Barnes and Brown 2011, 
Starliper 2011). 
 
5.3. Disease Agent 
 
Cytophaga agar (CA) (Anacker and Ordal 1959) is the most commonly used medium for 
isolation of F. psychrophilum from diseased fish. Colonies grown for 2-5 days at 15-20°C 
on CA are moist, yellow, circular, convex, smooth and non-adherent, 1-5 mm in diameter. 
Most strains produce colonies with a thin spreading irregular edge. Some strains produce 
colonies with a regular edge or a mixture of the two types (Figure 5.1).  
 

 
 

Figure 5.1. Colonies of a F. prychrophilum strain on Cytophaga agar, showing a mixture 
of regular and irregular periphery. 

 
The cells are Gram-negative, slender rods measuring 0.5×2-7 µm (Figure 5.2). The 
bacteria exhibit gliding motility on wet mount, but gliding is slow and difficult to observe. 
Holt et al. (1993) described the physiological characteristics of 28 strains of F. 
psychrophilum isolated from various salmonids in USA as follows. All 28 strains grew in 
supplemented TYE broth at 5-23°C, 18 strains grew slowly at 25°C, and no growth 
occurred at 30°C. All 28 strains grew in the presence of 0.5 and 1.0% NaCl but none grew 
in 2.0%. Catalase is positive, and cytochrome oxidase is negative. Flexirubin pigment is 
present in cells. Ammonium is produced, and hydrogen sulfide, indole, acetylmethl 
carbinol are not produced. Nitrate is not reduced. Casein, gelatin, albumin, and collagen 
are degraded. Agar, cellulose, carboxymethyl cellulose, starch, and chitin are not 
degraded. Degradation of elastin and tyrosine are variable. No acid is produced from 
simple or complex carbohydrates. Bernardet and Kerouault (1989) reported the presence 
of cytochrome oxidase but the reaction was weak. The DNA base composition (G+C 
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content) were reported 33.2-35.3 mol% with a mean of 34.3% for 13 strains (Holt et al. 
1993), and 32.5-33.8mol% with a mean of 33.4% for 3 strains (Bernardet and Kerouault 
1989). Duchaud et al. (2007) reported the complete genome sequence of the virulent 
strain JIP02/86 (ATCC49511) of F. psychrophilum that contained 32.54% G+C content. 
 

 
 

Figure 5.2. Gram-stained F. prychrophilum cells, measuring 0.5 ×2 – 7 μm. 
 
Strains of F. psychrophilum from salmonids in USA were reported to share common 
antigen(s) by various authors (Pacha 1968, Pacha and Porter 1968, Bullock 1972, Holt et 
al. 1993). On the basis of the absorption analysis with thermo-stable antigens, 
Wakabayashi et al. (1994) and Izumi and Wakabayashi (1999) demonstrated the existence 
of antigenic diversity within the species, and established three O groups (O1, O2 and O3). 
The typing system developed by Lorenzen and Olesen (1997) recognized the TpT, Th 
(subtype Th-1 and Th-2) and Fd serotypes. Mata et al. (2002) found seven host-dependent 
serovars from 34 isolates worldwide. Serovar 1, previously described as O1 or FpT, was 
only found in strains isolated from salmon. Serovars 2 and 3, previously described as O3 
or Th and Fd, were only found in rainbow trout. Serovars 4, 5, 6 were found in isolates 
from eel, carp, and tench, respectively. Serovar 7 was equivalent to serotype O2 
previously only found in strains from ayu in Japan. Using ClaI, HaeIII and PvuII 
restriction enzymes in ribotyping analyses 13 different genotypes were demonstrated and 
a possible relationship between serotype Fd and genotype F1 was determined (Madetoja 
et al. 2001). Izumi et al. (2003) reported that F. psychrophilum could be divided into two 
genotypes, A and B, by the polymorphism in an anonymous product of 290 bp that was 
amplified with universal primers for gyrase subunit B gene. Genotype A was found only 
in isolates from ayu, (n=109), while genotype B was found in isolates from coho salmon 
(n=11), ayu (n=35), rainbow trout (n=43) and other fishes (n=44). Yoshiura et al. (2006) 
identified the 290 bp fragment as a part of coding region of peptidyl-polyl cis-trans 
isomerase C (ppiC) gene. A 326 bp DNA fragment that differentiated genotypes A and B 
was amplified with a new PCR primers designed for ppiC gene (Yoshiura et al. 2006). 
The evidence that ayu has its own peculiar type of F. psychrophilum provoke a question 
where the type is originated. A hypothesis is that selection for the adapted mutants of F. 
psychrophilum might have occurred in Lake Biwa, the largest lake in Japan, because the 
single outlet of the lake, Seta River, is dammed and all the population of ayu are 
landlocked in the lake (Wakabayashi 2009). Nicolas et al. (2008) examined the nucleotide 
polymorphisms at 11 protein-coding loci of the core genome in a set of 50 strains from 10 
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different host fish species and four continents. The analysis provided no clues that the 
initial range of the bacterium was originally limited to North America, and suggested that 
human activities might enable the main two clonal complexes (CC1 and CC2) spread 
worldwide (Nicolas et al. 2008). 
 
Strains of F. psychrophilum differ widely in virulence (Holt et al. 1993, Madsen and 
Dalsgaard 2000). Dalsgaard (1993) reviewed various reports concerning the factors 
determining virulence of F. psychrophilum. Nematollahi et al. (2003b) made a 
comparison between the adhesion capacity of a high and low virulence F. psychrophilum 
strain by using a gill perfusion model and demonstrated that the high virulent strain 
attached more ready to the gill tissue than did the low virulence. Furthermore, the 
adhesion of the high virulent strain to the gill tissue was influenced by environmental 
factors such as organic material, nitrite and temperature. Analysis of 29 isolates of F. 
psychrophilum indicated that the isolates formed four groups based on the presence or 
absence of certain proteases visualized by substrate SDS-PAGE. In vivo infectivity 
experiments with juvenile steelhead and coho salmo indicated some association between 
protease group and virulence (Bertolini et al. 1994). Ostland et al. (2000) shown that a 
crude extracellular preparation from a strain of F. psychrophilum had proteolytic activity 
in that it could degrade gelatin and type II collagen in vitro and can produce severe 
muscle necrosis in experimentally injected rainbow trout after 24 h at 8°C. Secardes et al. 
(2001) purified an extracellular protease, designated Fpp1 (F. psychrophilum protease 1), 
that cleaved gelatin, laminin, fibronectin, fibrinogen, collagen type IV, and to a lesser 
extent, collagen types I and II. Production of Fpp1 depended on factors such as calcium 
concentration, growth phase of the culture, and temperature. Nematollahi et al. (2005) 
reported that high virulence in F. psychrophilum appeared to be correlated with higher 
macrophage cytotoxicity and resistance to reactive oxygen species (ROC) and, therefore, 
with enhanced resistance to bacterial killing by rainbow trout macrophages. Nagai and 
Nakai (2011) demonstrated that the in vitro growth of F. psychrophilum isolates in host 
fish serum correlated well with their pathogenicity to host fish, particularly in ayu. All 
isolates (n=19) from ayu grew well with a 9- to 116-fold increase of colony forming unit 
(CFU) in ayu serum, while CFU decreased markedly in amago salmon (Oncorhynchus 
masou ishikawae) serum. Experimental infection by intraperitoneal injection showed that 
ayu isolates examined were all pathogenic to ayu but not to amago salmon.  
 
5.4. Diagnostic Methods 
 
Epizootics of BCWD commonly occur when water temperatures range between 4 and 
10°C, but mortality generally abates as temperature approach 15-18°C (Cipriano and Holt 
2005). In feral ayu, the disease occurs mostly at water temperature between 12 and 20°C, 
and a sudden drop in water temperature after heavy raining may have a major impact on 
the outbreaks (Wakabayashi 2009).  
 
The clinical signs of BCWD differ with the age of affected fish. In coho salmon alevins, 
the skin covering the yolk sac becomes eroded and the sac may rupture. In fingerlings, the 
erosion of tissue in peduncle area is observed early in epizootics of BCWD, and later in 
the outbreak these lesions are found at various locations such as anterior to the dorsal fin, 
on the lateral side, ventrally, near the vent or on the lower (Cipriano and Holt 2005). In 
some outbreaks, moribund coho salmon with no external skin lesions, display dark 
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pigmentation on one side of the body, exhibit dorsal swelling just posterior to the skull, 
and swim in spiral motions when agitated (Kent et al. 1989). Juvenile coho salmon with 
aberrant spinal columns occurred several months after symptoms of BCWD disappeared, 
and the incidence is always greatest at hatcheries where BCWD was most severe (Conrad 
and DeCew 1967). Such fish often have to be discarded and can result in significant 
economic loss. 
 
In case of ‘rainbow trout fry syndrome’ (RTFS), fish weighing 0.2-1 g are the most 
frequently affected. They exhibit dark coloration of the skin, ascites and exophthalmia. 
The fry suffered from a severe anaemia causing extremely pale gills. The most consistent 
internal lesion is spleen hypertrophy often associated with liver discoloration (Berma; det 
et al. 1988, Lorenzen et al. 1991). F. psycrophilum infection at the fry stage may result in 
an increased occurrence of vertebral column deformities in farmed rainbow trout 
(Madsen and Dalsgaard, 1999, Madsen et al. 2001). 
 
The clinical signs of ayu infected with F. psychrophilum are similar to those of salmonid 
species. Skin and muscle peduncle lesions are observed first in juvenile ayu (Figure 5.3). 
In epizootics of BCWD among feral adult ayu, deep dermal ulcerations with necrosis of 
underlying musculature are found at various locations on the lateral side (Figure 5.4). 
Most of the affected feral ayu show pale gills, liver discoloration, and spleen hypertrophy 
(Iida and Mizokami, 1996). 
 

 
 

Figure 5.3. Peduncle lesions caused by F. psychrophilum in juvenile ayu. 
 

 
 

Figure 5.4. Deep dermal ulceration with necrosis of the underlying musculature caused 
by F. psychrophilum in feral adult ayu 
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For presumptive diagnosis, a microscopic examination of an imprint of spleen tissue that 
have been air dried and stained with safranin for one minute often will reveal many cells 
with typical F. psychrophilum morphology (Cipriano and Holt 2005). For definitive 
diagnosis, bacteria should be isolated on an appropriate medium and identified as F. 
psychrophilum. Cytophaga agar (Anacker and Ordal 1959) is the most commonly used, 
but there have been several reports of improved culture media for F. psychrophilum (Holt 
et al. 1993, Lorenzen 1993, Daskalov et al. 1999, Michel et al. 1999, Cepeda et al. 2004, 
Alvarez and Gijarro 2007).  Other sensitive diagnostic techniques than bacterial culture 
have been employed to detect F. psychrophilum in fish and its surroundings. These 
include serological methods such as immuno-fluorescence method (Lorenzen and Karas 
1992, Izumi and Wakabayashi 1997, Amita et al. 2000, Vatsos et al. 2002, Lindstrom et al. 
2009, Long et al. 2012), immuno-enzyme method (Evensen and Lorenzen 1996, 1997, 
Aikawa 1998) and enzyme-linked immune-sorbent assay (ELSA) (Rangdale and Way 
1995, Mata and Santos 2001, Lindstrom et al. 2009, Long et al. 2012). Molecular 
techniques have also been employed for non-culture based detection of F. psychrophilum, 
including restriction fragment length polymorphism (Nilson and Strom 2002), in situ 
hybridization (Liu et al. 2001), and polymerase chain reaction (PCR) (Toyama et al. 1994, 
Bader and Shotts 1998, Urdaci, et al. 1998, Cepeda and Santos 2000). Nested PCR assays 
have been adopted to detect low levels of F. psychrophilum from fish tissues and 
particularly from its surroundings (Izumi and Wakabayashi 1997, Wiklund et al. 2000, 
Baliarda et al. 2002, Taylor and Winton 2002, Izumi et al. 2005, Crumlish et al. 2007). 
Suzuki et al. (2008) compared the sensitivity and specificity of PCR methods targeting 
16S rDNA, DNA gyrase subunit genes (gyr A, gyrB) and ppiC for detection of F. 
psychrophilum, and concluded the PCRs targeting gyrB and ppiC seem to be preferable 
because of no false-positives. Del Cerro et al. (2002a) and Altinok (2011) developed 
maltiplex PCR methods for the simultaneous detection of three and four major fish 
pathogens including F. psychrophilum, respectively. Del Cerro et al. (2002b) also 
developed a new detection method for F. psychrophilum based on a TaqMan PCR assay. 
Orieux et al. (2011) described quantification of F. psychrophilum in rainbow trout tissues 
by qPCR. 
 
5.5. Control 
 
Chemotherapy with antibiotics is still an important method of BCWD control. 
Oxytetracycline (OTC), amoxicillin (AMS), oxolinic acid (OXA) and florfenicol (FLO) 
have been widely used around the world (Bruun, 2000, Lumsden et al. 2006). In USA, 
OTC and FLO are approved for treatment of BCWD in captive-reared fish (Starliper 
2011). In Japan, the approved drugs are OTC, OXA, FLO, and sulfuisozole for 
freshwater-cultured rainbow trout, and OXA, FLO, and sulfuisozole for ayu. However, it 
has been reported that acquired resistance of F. psychrophilum strains exists to various 
antibiotics (Rangdale et al. 1997, Soule et al. 2005, del Cerro et al. 2010, Kum et al. 2008, 
Henriquez-Nunez et al. 2012). 
 
Although no licensed vaccines are currently available for prevention of BCWD, several 
attempts to vaccinate fish against F. psychrophilum have been published. Various levels 
of protection were demonstrated in immunization trials with whole-cell bacterins 
administered by immersion and/or injection routes (Holt 1993, Obach and Laurencin 
1991, Rahman et al. 2000, LaFrentz et al. 2002, Madetoja et al. 2006). Kondo et al. 
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(2003) demonstrated the effectiveness of oral vaccination against BCWD in ayu. Recent 
studies have aimed at the development of subcellular vaccines. Rahman et al. (2002) 
reported that the outer-membrane fraction of F. psychrophilum induced significantly 
higher protection against BCWD in both rainbow trout and ayu compared to the 
whole-cell bacterin. Plant et al. (2009) demonstrated high antibody resposes in rainbow 
trout to heat shock proteins 60 and 70. LaFrentz et al. (2011) identified 15 proteins of F. 
psychrophilum by immunoproteomics and suggested that antibodies apecific for outer 
membrane protein OmpA, trigger factor, ClpB, elongation factor G, gliding motility 
protein GldN and a conserved hypothetical protein may be important for protective 
immunity from BCWD. A few studies have dealt with live attenuated vaccine against F. 
psychrophilum infection. LaFrenz et al. (2008) demonstrated that the immersion delivery 
of the rifampicin resistant 259-93B.17 strain stimulated protective immune responses in 
fish at 10 weeks post-immunization. Gliniewicz et al. (2012) described that the 
259-93B.17 strain havoured a mutation in the rpoB gene consistent with resistance to 
rifampicin. Alvarez et al. (2008) reported that a mutant in one of two exbD loci of a TonB 
system in F. psychrophilum showed attenuated virulence and conferred protection against 
BCWD.  
 
Because F. psychrophilum has been detected in fluid surrounding the eggs in sexually 
mature salmonids, iodophore treatment of eggs is routinely practiced to reduce microbial 
contamination of the egg surface (LaFrentz and Cain 2004, Cipriano and Holt 2005). 
However, F. psychrophilum presents within egg contents, not just in the surrounding 
fluids or on the egg surface (Brown et al. 1997, Kumagai et al. 2000, Taylor 2004, 
Cypriano 2005). Broodstock or egg culling and segregation programs can reduce the 
probability of BCWD epizootics in progeny at select aquaculture facilities, and the 
ELIZA is an appropriate tool to screen broodstock and provides an indication of infection 
severity (Lindstrom et al. 2009, Long et al. 2012). 
 
5.6. Recent Topics 
 
Recent researches suggest that selective breeding for innate resistance may offer a 
promising tool to control BCWD. Nagai et al. (2004) showed that amphidromous stock of 
ayu was significantly lower in susceptibility to F. psychrophilum challenges than 
domesticated and land-locked stocks. Henryon et al. (2005) demonstrated additive 
genetic variation for resistance to F. psychrophilum in a Danish rainbow trout population. 
These studies indicated a favorable potential for selective breeding for increased 
resistance. Haddi et al. (2008) characterized the phenotype of F. psychrophilum resistance 
and susceptible families of fish as they increased in size > 300-fold, and they showed a 
positive correlation between disease resistance and normalized spleen weight. Silverstein 
et al. (2009) demonstrated that rainbow trout survival after F. psychrophilum injection 
challenge was a moderately heritable trait in their broodstock population, indicating 
favorable implictions for selective breeding for increased disease resistance. More 
recently, a paper entitled as ‘Selective breeding of food sized rainbow trout against 
Flavobacteriosis’ was presented in the 3rd International Conference on the Members of the 
Genus Flavobacterium (LaPatra et al. 2012). 
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6. RED SPOT DISEASE 
Toshihiro Nakai 
 
6.1. Synopsis 
 
Red spot disease was first reported in 1972 from farmed Japanese eel (Anguilla japonica) 
in Japan and then from farmed European eel (A. anguilla) in European countries, with its 
characteristic subepidermal petechiae on the body surface and severe mortalities. 
Thereafter, the disease was recorded in various non-anguillid farmed species which were 
reared mostly under blackish or saltwater conditions. The causative agent, Pseudomonas 
anguilliseptica, is relatively psychrophilic and halophilic, and homogeneous in the 
phenotypic and genetic characteristics. P. anguilliseptica is thought to be a typical 
facultative pathogen because of its low virulence in experimental infection. 
 
6.2. Introduction 
 
Red spot disease, or ‘sekiten-byo’ in Japanese, was first described in Japanese eel 
(Anguilla japonica) at Japanese commercial farms in 1972, and the disease had caused 
serious economical damages in many eel farms for successive several years in Japan 
(Wakabayashi and Egusa, 1972; Muroga, 1978). Typical clinical sign of the disease was 
subepidermal petechiae on the body surface, and the name ‘red spot disease’ was due to 
this conspicuous external sign (Figure 1). A histopathological examination revealed that 
manifestation of petechial hemorrhages in the body appeared in an advanced stage of the 
disease (Miyazaki and Egusa, 1977). The disease in Japanese eel was also confirmed in 
Taiwan in 1978 (Kuo and Kou, 1978) and then recorded in cultured European eel (A. 
anguilla) in Japan, Scotland, Denmark, France and the Netherlands (Jo et al, 1975; 
Stewart et al, 1983; Mellergaard and Dalsgaard, 1987; Michel et al, 1992; Haenen and 
Davidse, 2001). Compared with Japanese eel, European eel was relatively less 
susceptible to the disease (Jo et al, 1975; Haenen and Davidse, 2001).  
 

Thereafter, the disease was recorded in various non-anguillid cultured fish species which 
were reared mostly under blackish or saltwater conditions in France, Spain, UK, 
Denmark, the Netherlands, Finland, Canada and Japan. These include black sea bream 
(Acanthopagrus schlegeli) (Nakajima et al, 1983), striped jack (Pseudocaranx dentex) 
(Kusuda et al, 1995), Atlantic cod (Gadus morhua) (Ferguson et al, 2004 ; Balboa et al, 
2007), orange-spotted grouper (E. coioides) (Al-Marzouk, 1999), gilthead seabream 
(Sparus aurata), European seabass (Dicentrarchus labrax), turbot (Scophthalmus 
maximus) (Berthe et al, 1995; Domenech et al, 1997), black spot seabream (Pagellus 
bogaraveo) (Lopez-Romalde et al, 2003), salmonids such as Atlantic salmon (Salmo 
salar), sea trout (S. trutta), rainbow trout (Oncorhynchus mykiss), whitefish (Coregonus 
sp.) (Wiklund and Bylund, 1990; Wiklund and Lonnstrom, 1994) and ayu (Plecoglossus 
altivelis) (Nakai et al, 1985a). In the case of ayu, which is commonly cultured in 
freshwater ponds, infection might have been established in estuary where fish were 
caught as seeds for culture. The causative bacterium was also isolated from wild Baltic 
herring (Clupea harengus membras) with eye lesions (Lonnstrom et al, 1994). 
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Figure 6.1. Pseudomonas anguilliseptica infection (red spot disease) of Japanese eel 
showing intensive petechial hemorrhages on the skin 

 
Epizootics of the disease in farmed Japanese eel in Japan prevailed mainly in early spring 
and sporadically in autumn when water temperature of the ponds ranged 10˚C to 20˚C, 
and ceased at 27˚C in early summer. Another epizootiological factor of the disease in 
Japanese eel farms was that farm ponds were located near the seashore and thus 
underground water used for fish rearing contained salinity (Cl 0.27-6.29 ppt) (Muroga et 
al, 1973). In cases of European eel, the disease was recorded at 23-25˚C and 16˚C in the 
Netherland and Denmark, respectively (Mellergaard and Dalsgaard, 1987; Haenen and 
Davidse, 2001). In marine fishes, the disease occurred during winter months when water 
temperature was below 16˚C in France and Spain (Berthe et al, 1995; Tranzo et al, 2005) 
or between 15˚C and 18˚C in salmonids in Finish coasts (Wiklund and Bylund, 1990). 
The most common clinical sign of the disease is haemorrhagic petechia on the skin. 
Petechial hemorrhages were also noticeable in the peritoneum and the adipose tissue of 
visceral organs in affected salmonids (Wiklund and Lonnstrom, 1994). The disease in 
Atlantic cod, Baltic herring and gilthead sea bream was often associated with eye lesions 
(Lonnstrom et al, 1994; Berthe et al, 1995 ; Ferguson et al, 2004). 
 
6.3. Disease Agent 
 
The causative agent of red spot disease, Pseudomonas anguilliseptica, is a Gram-negative, 
aerobic and motile rod, producing no acid from glucose and other carbohydrates. Growth 
of the bacterium on conventional agar media is rather slow and colonies are entire, 
convex, translucent and viscid. P. anguilliseptica is rather uniform in the biochemical 
characteristics regardless of the source of isolation, with a few exceptions. The bacterium 
grows in nutrient broth with NaCl 0-4% (optimum 0.5-1%) and at temperatures from 5˚C 
to 30˚C (optimum 15-25˚C). The cells are motile with a single polar flagellum but lose 
motility when cultured at 25˚C or over. Interestingly, the bacterium could survive in 
seawater or diluted seawater (Cl higher than 1.9 ppt) for more than 200 days, while it 
perished in freshwater within a day (Wakabayashi and Egusa, 1972; Muroga et al, 1977). 
Addition of seawater or Mg++ in culture media enhances motility of the cells in a wet 
mount method. 
 
Electron microscopy revealed a capsule-like envelope on cell surface of P. anguilliseptica 
(Wakabayashi and Egusa, 1972). A series of serological analysis on Japanese, Taiwanese, 
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and Scotish isolates from eels demonstrated that the bacterium had a common heat-stable 
antigen (O antigen). However, based on a heat-labile antigen (stable at 100˚C for 30 min 
but labile at 100˚C for 120 min or 121˚C for 30 min), designated as K antigen, it was 
divided into two serotypes; K+ type (K antigen-possessing) and K- type (K 
antigen-lacking) (Nakai et al, 1981, 1982). These serotypes correlated well with their 
experimental virulence to eels; K+ type was virulent to both Japanese and European eels 
but K- type was avirulent to both species (Nakai and Muroga, 1982; Nakai et al, 1985b). P. 
anguilliseptica isolates from ayu also had K antigen (K+-2), which was differentiated 
from that (K+-1) of the eel isolate (Nakai et al, 1985a). Furthermore, it was shown that K 
antigen-related resistance to serum (complement)-killing of fish correlated well with the 
virulence of the isolates (Nakai, 1985) (Table 6.1). The Finnish isolates from salmonids 
were similar to serotype of the ayu isolates (Wiklund and Bylund, 1990). On the other 
hand, two different O serotypes were described for non-eel isolates and eel isolates; 
serotype O1 for isolates from turbot, sea bream, sea bass, herring and salmonids, and 
serotype O2 for isolates from Japanese and European eels (Lopez-Romalde et al, 2003; 
Balboa et al, 2007). This serotyping correlated with genotyping by randomly amplified 
polymorphic DNA (RAPD) analysis (Lopez-Romalde et al, 2003).  
 

Virulence to fish Resistance to serum-killing Fish or  
serum source K+-1*1  K+-2 K- K+-1 K+-2 K- 
Japanese eel ++*2   + - ++ + - 
Bluegill    ++   nd*5 - ++ nd - 
European eel +*3   nd - + nd - 
Ayu   +   ++ nd + ++ nd 
Carp  -*4    - - - - - 
Goldfish    -   nd - - nd - 
Tilapia      -    - - - - - 
Rainbow trout      -   nd - - nd - 

 
*1 serotype   
*2 high virulence (LD50: 106 cfu/fish) or high serum-resistance   
*3 low virulence (LD50: 108-9 cfu/fish) or high serum-resistance   
*4 no virulence or no serum-resistance   
*5 no data 

 
Table 6.1. Comparison of virulence to fish and resistance to serum-killing among 
Pseudomonas anguilliseptica serotypes (from (Nakai et al, 1985a; Nakai, 1985)) 

 
Several fish species were tested for their susceptibility to a virulent strain (K+-1 type) of P. 
anguilliseptica by intramuscular injection (Muroga et al, 1975; Uno, 1976). Japanese eel 
was more susceptible to the pathogen than European eel. Ayu, bluegill (Lepomis 
macrochirus) and loach (Misgurnus anguillicaudatus) were highly susceptible, and carp 
(Cyprinus carpio) and goldfish (Carassius auratus) were slightly susceptible to the 
pathogen, while rainbow trout, amago (Oncorhynchus rhodrus f. macrostoma), kokanee 
salmon (O. nerka f. adonis) and iwana (Salvelinus pluvius) were not susceptible. A 
similar experimental infection with a K+-1 type strain showed that the LD50 to Japanese 
eel was about 106 cfu/fish (Nakai et al, 1985). In a dip method, which fish were kept at 

 153  



FISH DISEASES - Diseases Caused By Bacterial Pathogens In Inland Water - Hisatsugu Wakabayashi, Terutoyo Yoshida, Tetsuichi 
Nomura, Toshihiro Nakai, Tomokazu Takano 

©Encyclopedia of Life Support Systems (EOLSS) 

tanks containing 106-7 cfu/ml of the bacterium, infection was established if diluted 
seawater was used as rearing water, while gastral administrations of the bacterium failed 
to cause mortality (Muroga and Nakajima, 1981). When Japanese eels were challenged 
by intramuscular injection with the K+-1 type strain under different water temperatures, 
fish died at 12˚C or 20˚C with high cell numbers (108-10 cfu/g or ml) in the blood and 
organs, but not at 28˚C (Nakai et al, 1985). The LD50 of the turbot isolate to juvenile 
turbot by intraperitoneal injection was 106 cfu/fish (Magi et al, 2009). 
 
6.3.1. Diagnostic methods 
 
P. anguilliseptica is easily isolated with abundant colonies on conventional nutrient agar 
media from various organs of diseased fish. The bacterium is biochemically 
homogeneous and can be differentiated from the other fish-pathogenic pseudomonads (P. 
fluorescens, P. putida, P. chlororaphis and P. plecoglossicida) by negative reactions in 
carbohydrate utilization. Serological and RAPD techniques are available for serotyping 
and genotyping of P. anguilliseptica as well as rapid diagnosis of the disease (Horiuchi 
and Kohga, 1979; Nakai et al, 1981; Lopez-Romalde et al, 2003). PCR-based techniques 
have been developed for rapid identification of P. anguilliseptica or sensitive detection of 
the pathogen from fish (Blanco et al, 2002; Romalde et al, 2004; Beaz-Hidalgo et al, 
2008).  
 
6.4. Control 
 
P. anguilliseptica was sensitive to some antibiotics (Wakabayashi and Egusa, 1972; 
Wiklund and Bylund, 1990), and treatments with oxolinic acid and nalidixic acid were 
effective to experimentally infected Japanese eels (Jo, 1978). However, chemotherapy is 
not so effective in eel farms mainly due to the fact that the disease occurs in early spring 
when fish have poor appetite at lower water temperature. Treatment of Atlantic salmon 
with oxytetracycline had only a limited effect (Wiklund and Bylund, 1990). 
 
As mentioned previously, the disease occurs preferably in Japanese eels farmed in 
brackish water ponds in spring and autumn. The epizootiological features were supported 
by the experimental results of physiological and pathological characteristics of the 
pathogen. Based on these findings, some control measures were proposed (Muroga, 
1978). In the areas where the epizootic has been prevailing, eels should be cultured in 
freshwater ponds and/or the water temperature should be kept at 26˚C or higher. 
Particularly, the temperature manipulation was so efficacious that the epizootic had burnt 
low at late 1970s and completely disappeared since 1980s in eel farms in Japan. 
Development of green-house culture system for Japanese eel, where water temperature is 
constantly kept at about 26˚C for optimum growth of eel, greatly contributed to 
eradication of the disease. 
 
The temperature manipulation, however, is not applicable for salmonids and other 
coldwater fish species or cage-cultured marine fishes in the open sea. It was confirmed 
under laboratory setting that both antibody response and protection in Japanese eels 
immunized by injection with P. anguilliseptica bacterin (formalin-killed cells) 
incorporated with FCA were maintained over five months (Nakai and Muroga, 1979). A 
field vaccination trial was conducted in a commercial eel farm having history of red spot 
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disease. Japanese eels were injected intramuscularly twice with heat-killed (100˚C for 30 
min) bacterin on the beginning of November in 1980. Red spot disease occurred in the 
pond from May to June in 1981 and the injection vaccination procedure proved to be 
effective against natural infection of P. anguilliseotica (Nakai et al, 1982). However, any 
successful results have not been obtained by either immersion or oral vaccination for eels. 
On the other hand, it was shown that non-mineral oil-adjuvanted bacterins were effective 
against experimentally induced disease in gilthead seabream and turbot (Tranzo et al, 
2005). 
 
The aforementioned epizootiological and pathological findings suggest that P. 
anguilliseptica is ubiquitous in salt or brakish waters, and wild fishes might serve as an 
important infection source, either vector or carrier, for farmed fish (Lonnstrom et al, 
1994). Since P. anguilliseptica is possibly a typical facultative pathogen to any fish 
species, it is essential to reduce predisposing factors for controlling the disease (Mushiake 
et al, 1984). 
 
7. EDWARDSIELLOSIS (EDWARDSIELLA ICTALURI) 
Tomokazu Takano 
 
7.1. Synopsis 
 
Edwardsiella is a distinct taxon within the family Enterobacteriaceae, and includes three 
species, Edwardsiella ictaluri (Hawke, et al, 1981), E. tarda (Ewing et al, 1965) and E. 
hosinae (Grimont et al, 1980). Edwardsiella hosinae strains were mainly isolated from 
birds and reptiles (Grimont et al, 1980). Both E. ictaluri and E. tarda cause diseases in 
fish. More specifically, E. ictaluri is associated with freshwater fish species including 
ictalurid fish, whilst E. tarda has a broader host range amongst freshwater and marine fish 
species (Abbott and Janda, 2006; Evans et al, 2011). In this section information on E. 
ictaluri is discussed.  
 
7.2. Introduction  
 
Hawke (Hawke 1979) first reported undefined species of Edwardsiella from channel 
catfish (Ictalurus punctatus) suffering from enteric septicaemia. His later research 
(Hawke, et al, 1981) revealed that Edwardsiella ictaluri was the causative agent of enteric 
septicaemia of catfish (ESC), which is one of the most important infectious diseases of 
the catfish industry in the USA. The economic losses caused by ESC have been estimated 
to be US$20-60 million/year (Evans et al, 2011; Plumb and Vinitnantharat, 1993; 
Shoemaker et al, 2003). Besides catfish production in USA, the freshwater catfish 
(Pangasius hypophthalmus) industry in Southeast Asian countries also suffers from E. 
ictaluri infections (Ferguson et al, 2001; Crumlish et al, 2002 ; Yuasa et al, 2003).  
 
7.3. Disease Agent  
 
7.3.1 Characteristics 
 
The type strain of E. ictaluri is ATCC 33202. It is a Gram-negative, rod-shaped bacterium 
which measures 0.5 by 1.25 μm after 18 to 48 h of culture on solid media. At 25°C it is 
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motile using peritrichous flagella. The optimum growth temperature and pH is between 
25–30°C (Hawke, et al, 1981) and 7.0–7.5 (Plumb and Vinitnantharat, 1989), respectively. 
Growth occurs in 1.5% sodium chloride, but not 2% sodium chloride (w/v) (Waltman et 
al, 1986). Edwardsiella ictaruli produce catalase, lysine and ornithine decarboxylase, but 
not cytochrome oxidase and β-galactosidase (Waltman et al, 1986). It also ferments and 
oxidizes glucose while producing gas at 25–30°C, but not at 37°C (Hawke, et al, 1981; 
Waltman et al, 1986). Edwardsiella ictaluri does not produce indole and hydrogen sulfide, 
whilst E. tarda does (Hawke, et al, 1981). Edwardsiella ictaluri and E. tarda may be 
differentiated by these biochemical characteristics (Figure 7.1).  
 

 
 

Figure 7.1. Colonies of E. ictaluri and E. tarda on SS agar. Salmonella-Shigella agar 
permits detection of hydrogen sulfide (H2S) by the production of colonies with black 

centers. Edwardsiella ictaluri isolated from ayu does not produce H2S (A), whilst E. tarda 
isolated from Japanese flounder produces H2S (B). 

 
7.3.2. Genome Size 
 
The whole genome sequence of E. ictaluri 93-146, a wild-type isolate from a natural 
outbreak in Louisiana in 1993, has been determined. The completed genome of E. ictaluri 
93-146 is 3,812,315 bp in length. A total of 3,783 protein-coding genes were predicted 
from the genome sequence. Of these, 2,007 genes have functional predictions. The 
sequence has an average G + C content of 57.4% [13].  
 
7.3.3. Serological Classification  
 
Plumb and Klesius (Plumb and Klesius, 1988), using E. ictaluri monoclonal antibody 
preparations, showed that 17 USA isolates were serologically identical. Furthermore, 
identical agglutination titers of E. ictaluri-specific rabbit antisera to isolates from 
different hosts and different geographic localities were reported (Plumb and 
Vinitnantharat, 1989). Bertolini et al. (1990) reported the strong cross reactivity of 
antisera prepared from catfish and non-ictalurid (green knife fish, Eigemmannia 
virescens) isolates. Therefore, it is believed that there is little serological diversity 
amongst E. ictaluri strains. 
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7.3.4. Molecular Classification 
 
For intraspecific classification of E. ictaluri, molecular techniques allowed better 
resolution than serological techniques. Lobb et al. (1993) utilized western blot analysis of 
the proteinase K-treated cell lysates and Southern blot analysis of the cryptic plasmid 
DNAs, and they were able to differentiate E. ictaluri isolates. Amongst twenty (20) E. 
ictaluri isolates, four subgroups were identified using enterobacterial repetitive intergenic 
consensus (ERIC) PCR (Bader et al, 1998). Fingerprinting by amplified fragment length 
polymorphisms (AFLP) demonstrated that the madtom (Noturus gyrinus) isolates were 
genetically different from the other E. ictaluri isolates (Klesius et al, 2003). Recently, 
mass mortality of wild ayu (Plecoglossus altivelis) caused by E. ictaluri infection was 
reported in Japan. Isolates of E. ictaluri from ayu and isolates from P. hypophthalmus in 
Indonesia were classified into the same subgroups, whereas isolates from channel catfish 
in the USA were classified into another subgroup based on AFLP fingerprinting (Sakai et 
al, 2009). 
 
7.3.5. Pathogenesis 
 
Four families of catfish, Ictaluridae, Clariidae, Siluridae and Pangasiidae, are associated 
with E. ictaluri infection (Evans et al, 2011). In addition, Bengal danio (Danio devario), 
Chinook salmon (Oncorhynchus tshawytscha), European sea bass (Dicentrarchus labrax), 
green knife fish, Japanese eel (Anguilla japonica), rosy barb (Puntius conchonus), 
rainbow trout (O. mykiss), rudd (Scardinius erythrophthalmus), striped bass (Morone 
saxatilis), and white perch (M. americana) have been infected with E. ictaluri (Evans et 
al, 2011). Channel catfish is highly susceptible to E. ictaluri. An injection of 1.5 x 103 
cells of the bacterium into the catfish was sufficient to cause 100% mortality (Plumb and 
Sanchez, 1983). From the data of an experimental challenge test amongst the non-catfish 
species, only tilapia (Oreochromis aureus) showed slight susceptibility, whilst Golden 
shiner (Notemigonus crysoleucas), bighead carp (Aristichthys nobilis) and largemouth 
bass (Micropterus salmoides) were completely resistant (Plumb and Sanchez, 1983). It is 
reported that the ayu has a relatively higher susceptibility (LD50 = 1.3 x 104 CFU/fish) to 
E. ictaluri infection (Sakai et al, 2008).  
 
Morrison and Plumb (1994) experimentally demonstrated the attachment of E. ictaluri on 
the olfactory mucosal surface of channel catfish. With regard to this attachment 
mechanism, it was reported that E. ictaluri possesses bacterial lectins to attach to specific 
sugar residues, including D-mannose, N-acetylneuraminic acid and L-fucose, of nasal 
mucosa (Wolfe et al, 1998). Thus, the olfactory organ of catfish appears to be important in 
the waterborne infection of E. ictaluri (Morrison and Plumb, 1994; Miyazaki and Plumb, 
1985; Shotts et al, 1986). Intestinal mucosa is thought to be another important site of 
entry of E. ictaluri into catfish. This is because, in acute ESC, lesions were first seen as 
infiltrations of macrophages (some of which containing engulfed bacteria) in the lamina 
propria and submucosa of the anterior intestine (Newton et al, 1989). The gill is also a 
primary site of E. ictaluri invasion. Nusbaum and Morrison (1996) demonstrated the 
colonization of the organism on the gill epithelium of channel catfish following 
immersion challenge. The internalized E. ictaluri into the host was able to resist 
phagocytosis and survive in the host phagocytic cells. Hence, it is believed that host 
phagocytic cells serve as a vehicle for the systemic dissemination of E. ictaluri (Morrison 
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and Plumb, 1994; Shotts et al, 1986). 
 
7.4. Diagnostic Methods  
 
Isolation of E. ictaluri from diseased fish is achieved from kidney, liver, spleen, intestine, 
brain and skin or muscle lesions by inoculation of material into brain heart infusion (BHI) 
agar, blood agar, or Salmonella-Shigella (SS) agar. Following incubation at 26°C for 48h, 
smooth circular (2 mm diameter), slightly convex, entire, non-pigmented colonies 
develop (Hawke 1979; Austin and Austin, 2007) . A selective medium, called E. ictaluri 
medium (EIM), has been formulated for the isolation of E. ictaluri (Shotts and Waltman, 
1990). 
 
7.4.1. Clinical Signs and Gross Pathology 
 
Once channel catfish suffer ESC, the fish refuse to feed, show depigmentation of the skin, 
and swim with a spiral movement. Gross external lesions include haemorrhages around 
the mouth, on the lateral and ventral portions of the body, and on the fins. Other signs 
include pale gills, exophthalmia, and small ulcerations on the body (Bullock and Herman, 
1985). 
  

 
 

Figure 7.2. Clinical signs of E. ictaluri-infected ayu. Observation of exophthalmos (A), 
abdominal dissension and reddening of the anus (B), ascites (C), protruded lesion on the 

skin (D), and reddening of the gonad (E) were reported (Sakai et al, 2008). (All 
photographs by Dr. Sakai T., National Research Institute of Aquaculture, Fisheries 

Research Agency). 
 
 Acute ESC and chronic ESC in channel catfish were experimentally demonstrated 
(Shotts et al, 1986; Newton et al, 1989). Lesions compatible with acute ESC including 
cutaneous haemorrhage and ulceration, enteritis, olfactory sacculitis, hepatitis and 
dermatitis were most commonly seen. Accumulation of bloody serous fluid within the 
body cavity, congestion and haemorrhages in the liver were also observed. Chronic ESC 
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was often characterized by “hole in the head” lesions. Dorsocranial swelling and 
ulceration, granulomatous olfactory neuritis/perineuritis and meningoencephalitis 
involving the olfactory bulbs, olfactory tracts and brain were typical in chronic ESC. In 
the case of ayu, haemorrhagic ascites were suggested to be a pathognomonic sign of E. 
ictaluri infection. The onset of pericarditis was also observed in diseased ayu (Sakai et al, 
2008) (Figure 7.2). 
 
7.4.2. Histopathology 
 
For internal clinical signs, the most severely damaged organs in E. ictalrui-infected 
catfish are the liver and spleen (Plumb, 1999). Congestion and apparent ellipsoids in the 
spleen are often observed in ESC-affected catfish. Necrosis of hepatocytes with 
accumulations of macrophages and neutrophils are observed throughout the liver in E. 
ictaluri-infected catfish. The macrophage in the tissues of the infected fish frequently 
contains intracellular bacteria (Shotts et al, 1986). Inflammatory responses in the loose 
connective tissue of the olfactory sac, olfactory nerve and the periphery of the olfactory 
bulb in channel catfish are seen when E. ictaluri are infected via the nares. Diffuse 
granulomatous response in the telencephalon or olfactory lobe of the brain occurs in the 
affected catfish of typical “hole in the head” lesions (Shotts et al, 1986).  
 
7.4.3. Diagnosis by PCR and Serological Techniques 
 
Bilodeau et al. (2003) developed a real-time PCR technique for E. ictaluri detection. The 
sensitivity of detection was determined to be as low as the equivalent of 2.5 cells in a 
DNA sample. A set of PCR primers, targeting the upstream region of the fimbrial gene 
cluster, successfully detected isolates of E. ictaluri from catfish and ayu (Sakai et al, 
2009). Besides PCR-based techniques, the usefulness of monoclonal antibodies (MAb) 
for indirect fluorescent antibody (IFA) techniques for confirming clinical diagnosis of 
ESC was suggested (Ainsworth et al, 1986). Enzyme linked immunosorbent assay 
(ELISA) methods have also been developed to detect catfish antibodies to E. ictaluri 
(Waterstrat et al, 1989). This ELISA technique is useful to check whether the fish have 
been infected with E. ictaluri. 
 
7.5. Control 
 
7.5.1. Prevention 
 
Minimizing stressors, preventing overcrowding, using proper feeds but not overfeeding, 
maintaining high water quality, and removing dead fish as soon as possible are important 
management practices to reduce the effect of ESC. Discontinuing feeding (e.g., skipping 
1 or 2 days between feeding) may be a good management practice when ESC strikes. This 
practice has been adopted by many channel catfish farmers instead of feeding a 
medicated-diet (Evans et al, 2011; Plumb 1999).  
 
7.5.2. Chemotherapy 
 
In the USA, chemotherapy of ESC in channel catfish is achieved by feeding 
medicated-diets containing antibiotics. Three antibiotics have been approved for ESC 
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control of channel catfish. These are florfenicol (Aquaflor), oxytetracycline (Terramycin), 
sulfadimethoxine-ormetoprim (Romet-30). Florfenicol is fed at 10 mg/kg of fish/day for 
10 days. Oxytetracycline is fed at 50–75 mg/kg of fish/day for 12–14 days. 
Sulfadimethoxine-ormetoprim is also fed at 50–75 mg/kg of fish/day for 5 days. The 
withdrawal periods for florfenicol, oxytetracycline and sulfadimethoxine-ormetoprim are 
12, 21, and 3 days prior to harvest, respectively (Evans et al, 2011).  
 
7.5.3. Vaccine 
 
Saeed and Plumb (1986) demonstrated enhancement of the agglutination antibody titre 
and protection by multiple injections of the LPS prepared from E. ictaluri. Similarly, it is 
reported that an intraperitoneal injection of a whole-cell preparation of formalin-killed E. 
ictaluri, cellular extract, and crude membrane produced agglutination antibody titres 
(Vinitnantharat and Plumb, 1992). Primary immunodominant antigens in the cell 
membrane of E. ictaluri with a molecular mass of 36 kDa and 60 kDa provided protection 
to channel catfish (Vinitnantharat et al, 1993). Thune et al. (1994) investigated the 
practical application of vaccination against E. ictaluri. They demonstrated the potential of 
an oral/immersion method of killed E. ictaluri vaccine to small size channel catfish. 
Recently, because of its higher efficacy, attenuated E. ictaluri vaccine attracts more 
attention than other types of vaccines. Klesius and Shoemaker (1999) developed an 
attenuated vaccine strain RE-33 by passages on an antibiotic of refampicin. Strain RE-33 
(AQUAVAC-ESCTM) has been available since 2000 for catfish farming in the USA. 
About 25% of all catfish fry and/or fingerlings produced in south-eastern USA have been 
immunized with this attenuated vaccine (Evans et al, 2011)[5].  
 
7.6. Recent Topics 
 
The entire genome sequence of E. ictaluri 93-146 has been determined (Williams et al, 
2012). Yang et al. (2012) also sequenced the whole genome of E. ictaluri ATCC33202 to 
conduct comparative phylogenomic analyses of Edwardsiella species. They found that 
93-146 and ATCC33202 share most of the genomic islands (GIs) and the insertion 
sequence (IS) elements between themselves, but E. tarda strains have higher sequence 
divergence of GIs and IS elements. The conserved GIs and IS element profiles in E. 
ictaluri strains imply that the genomes of different E. ictaluri might be kept less modified 
in relatively fixed hosts, whilst the variance distribution of GIs and IS elements in 
different E. tarda strains may correspond to the broad host range properties. Presence of 
the gene clusters of the type III and type VI secretion systems was determined in the 
genome of E. ictaluri. The importance of these secretion systems in the virulence of 
Edwardsiella species was suggested from functional studies using gene mutagenesis 
techniques (Thune et al, 2007; Wang et al, 2009;Chakraborty et al, 2011; Rogge and 
Thune, 2011). 
 
8. MOTILE AEROMONADS DISEASE 
Tomokazu Takano 
 
8.1. Synopsis 
 
A haemorrhagic septicaemia caused by Aeromonas hydrophila complex has been 

 160  



FISH DISEASES - Diseases Caused By Bacterial Pathogens In Inland Water - Hisatsugu Wakabayashi, Terutoyo Yoshida, Tetsuichi 
Nomura, Toshihiro Nakai, Tomokazu Takano 

©Encyclopedia of Life Support Systems (EOLSS) 

observed in numerous species of fresh water fish and occasionally in marine fish and 
amphibians, reptiles, cattle and humans through out the world. Especially, the severe 
diseases occur in cultured freshwater fish (Bullock et al., 1971; Aoki, 1974; Egusa, 1978; 
Khardori and Fainstein, 1988; Schäperclaus et al., 1992). In this section, characteristics, 
diagnostic methods, and control of A. hydrophila are reviewed.  
 
8.2. Introduction 
 
Infectious abdominal dropsy in common carp has been attributed to the A. hydrophila 
group (Aeromonas punctata) and was first described by Schäperclaus (1930). During the 
1960s, outbreaks of red fin disease, caused by A. hydrophila, occurred frequently in 
cultured eel in Japan (Hoshina, 1962; Egusa, 1978). The bacterium inhabits widely in 
freshwater environment such as water and bottom sediments containing organic material, 
as well as in the intestinal tract of fish (Aoki, 1974; Egusa, 1978; Hazen et al., 1978; 
Seidler et al., 1980; Kaper et al., 1981; van der Kooij and Hijnen, 1988; Sugita et al., 
1994; Dumontet et al., 1996). Concurrent infection by Saprolegnia parasitica in cultured 
Japanese eel was also reported (Egusa, 1978). Hence, Aeromonas hydrophila is typically 
recognized as an opportunistic pathogen or secondary invader (Austin and Austin, 1987). 
Infection by A. hydropila became known in most cultured fresh water fish species. 
Therefore, A. hydropila is economically important in fresh water farming.  
 
8.3. Disease Agent 
 
Characteristics 
Kou (1972a, 1973) and Wakabayashi et al. (1981) recognized that almost all pathogenic 
strains of motile aeromonads relevant to aquaculture were encompassed within A. 
hydrophila biover. hydrophila, proposed by Popoff and Véron (1976).  
 
Aeromonas hydrophila is a Gram-negative rod-shaped bacterium and is motile, due to a 
monotrichous polar flagellum. The bacterium measures 0.3–3.0 μm in diameter and 
1.0–3.5 μm in length. It was no spore stage or capsule. The optimum growth temperature 
is 28°C, but growth can occur at 27°C. Colonies on nutrient agar are white to pale pink, 
round and convex, with entire margins. 
 
The biochemical characteristics are shown in Table 8.1. It is a facultative anaerobe, 
fermenting carbohydrates to acid, or acid and gas. Aeromonas hydrophila is resistant to 
the vibriostatic agent O/129 (phosphate: 2,4-diamino-6,7-diisopropylpteridine 
phosphate) 150 μg, reduces nitrates to nitrate, is unable to grow in media containing 6.5% 
sodium chloride (NaCl) and is generally resistant to ampicillin and carbenicillin. The 
guanine plus cytosine (G + C) content of the deoxyribonucleic acid (DNA) is 57–63% 
(MacInnes et al., 1979; Aoki, 1999). 
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Table 1. Biological characteristics of Aeromonas hydrophila.
Characteristics Response
Indole production in 1% peptone water +
Aesculin hydrolysis +
Growth in potassium cyanide (KCN) broth +
L-Histidine and L-arginine utilization +
L-Arabinose utilization +
Acetoin from glucose (Voges-Proskauer (VP) reaction) +
H2S from cysteine +
Oxidase +
Cytochrome Oxidase +
Catalase +
Methyl red (MR) experiment d
Acethylmethylcarbinol production +
2,3-Butanediol production +
2,3-Butanediol dehydrogenase +
β-Galactosidase production +
Phosphatase +
Nitrate reduction +
Urease -

Malonate -

Gelatin liquefaction +
Casein digestion +
Loeffler serum digestion +
Starch hydrolysis +
Lipase +
Lecithinase +
Glucuronate utilization +
Ornithine decarboxylase -

DNAse +
RNAse +
Haemolysis +
Carbohydrate decomposition
   Adonitol -

   Aesculin d
   Arabinose d
   Cellobiose d
   Dextrin +
   Dulcitol -

   Fructose +
   Galactose +
   Glucose +
   Glycerol +
   Glycogen +
   Inositol -

   Insulin -

   Lactose d
   Maltose +
   Mannitol +
   Mannose   +
   Melezitose -

   Raffinose d
   Rhamnose d
   Salicin d
   Sorbitol d
   Sorbose -

   Starch +
   Sucrose d
   Trehalose +
   Xylose -

H2S, hydrogen sulphide; DNAse, deoxyribonuclease; RNAse, ribonuclease.
+, Typically positive; −, typically negative; d, differs among strains;

 
 

Table 8.1. Biological characteristics of Aeromonas hydrophila. 
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Classification  
Aeromonas hydrophila contains thermostable O, thermolabile K and flagellar H antigens. 
Serologically, the O antigen of A. hydrophila is hetero generous (Sakazaki and Shimada, 
1984; Janda et al., 1994, 1996). Different serotypes have been observed from various 
sources of fish, isolated in different years and places (Eddy, 1960; Bullock, 1966). 
Interestingly, a common antigen has been found among virulent strains (Kou, 1972b; 
Leblanc et al., 1981). Protein fingerprints do not correlate with biochemical 
characteristics. Both phenotype and protein fingerprints show clustering of 
epizootiologically related isolates (Millership and Want, 1993). Maruvada et al. (1992) 
detected species-specific polypeptides of the outermembrane from A. hydrophila, and 
Wilcox et al. (1992) suggested that outermembrane protein profiles were useful for 
confirming the identity of A. hydrophila. Shaw and Hodder (1978) showed that 
O-polysaccharides were remarkably similar structure in motile Aeromonas species, 
including A. hydrophila. MacInnes et al. (1979) investigated the DNA homology of 17 
strains of A. hydrophila, which had been collected from various sources, using A. 
hydrophila ATCC7966 as a reference strain. The percentage homology DNA ranged from 
39 to 100%, with a mean value of 64.7%. Aeromonas hydrophila does not seem to show 
any significant divergence among the 17 strains investigated. The 16S ribosomal DNA 
(rDNA) from ten species of Aeromonas was sequenced to analyze relatedness 
(Martinez-Murcia et al., 1992). Homology for 16S rDNA of the ten species exhibited 
very high levels, ranging 98 to 100%. East and Collins (1993) showed that region 
encoding 23S ribonucleic acid (RNA) from A. hydrophila was identical to that of gamma 
division of Proteobacteria, Escherichia coli and Plesiomonas shigelloides. Small-subunit 
ribosomal RNA (rRNA) sequences of Aeromonas were examined for a phylogenetic 
analysis (Ruimy et al. 1994). 
 
Host range and Pathogenesis 
Most cultured fresh water fish are susceptible to infection by A. hydropila, such as brown 
trout (Salmo trutta), rainbow trout (Oncorhynchus mykiss), chinook salmon 
(Oncorhynchus tshawytscha), ayu (Plecoglossus altivelis), carp (Cyprinus carpio), 
channel catfish (Ictalurus punctatus), clariid catfish (Clarias batrachus), Japanese eel 
(Anguilla japonica), American eel (Anguilla rostrata), gizzard shad (Dorosoma 
cepedianum), goldfish (Carassius auratus), golden shiner (Notemigonus crysoleucas) 
and tilapia (Tilapia nilotica) (Bullock et al., 1971; Egusa, 1978: Saitanu, 1986; Aoki, 
1999). 
 
A variety of possible virulence factors of A. hydrophila have been suggested, including 
lipopolysaccharides (endotoxins), extracelluar products (ECP), siderophores, the abilitu 
of attachment to host cells and surface proteins. The ECP include a cytotoxin, enterotoxin, 
haemolysins, protease, haemagglutinin and acetyl cholinesterase (Cahill, 1990; Gosling, 
1996; Howards et al., 1996). Aeromonas hydrophila enters through the epithelium of the 
intestinal tract of fish. Enterotoxins of A. hydrophila cause fluid to accumulate in ligated 
rabbit ileal loops. Enterotoxins are divided into two types, cytotonic and cytotoxic.  
 
8.4. Diagnostic Methods  
 
Isolation 
Aeromonas hydrophila can be grown on brain-heart infusion medium, tryptosoy agar, 
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neutrient agar and MacConkey agar with incubation at 20–25°C for 24–48 h. Numerous 
selective media have been developed fro the isolation and presumptive identification of A. 
hydrophila or motile aeromonads (Moyer, 1996), including Rimler-Shotts medium 
(Shotts and Rimler, 1973), modified peptone beef-extract glycogen agar (McCoy and 
Seidler, 1973), Rippey-Cabelli (membrane filter method (mA)) agar (Rippey and Cabelli, 
1979), MacConkey’s agar supplemented with trehalose (Kaper et al., 1979) and 
starch-ampicillin agar (Palumbo et al., 1985). Davis and Sizemore (1981) reported that 
Rimler and Shotts medium and Rippey-Cabelli agar were not suitable for A. hydrophila. 
Arcos et al. (1988) compared six media for selective isolation of A. hydrophila and 
showed that mA agar gave the best recovery rate and also an acceptable specificity, but its 
selectivity was low. An API-20E test strip can be used for identification of the 
Enterobacteriaceae including A. hydrophila. 
 
Clinical signs, Gross pathology and Histopathology 
Diseased fish usually display cutaneous haemorrhage of the fins and trunk, and the 
condition is often referred to as ‘red fin disease’ (Hoshina, 1962). The bacteria multiply 
inside the intestine, causing a haemorrhagic mucousdesquamative catarrh. Toxic 
metabolites of A. hydrophila are absorbed from the intestine and induce a toxaemia. 
Capillary haemorrhage occurs in the dermis of fins and trunk and in the submucosa of the 
stomach. Hepatic cells and epithelia of renal tubules show degeneration. Glomeruli are 
destroyed and the tissue becomes haemorrhagic, with exudates of serum and fibrin 
(Miyazaki and Jo, 1985; Miyazaki and Kaige, 1985). European carp infected with A. 
hydrophila show severe tail and fin rot and visible haemorrhage and ulceration of the 
body surface. Widespread proliferation of bacteria is usually observed in the intestine. In 
some reports (Fijan, 1972; Wolf, 1988), the histopathological phenomena associated with 
the rhabdovirus infection haemorrhagic septicaemia of carp have been erroneously 
attributed to motile aeromonads (Bullock et al., 1971).  
 
Diagnosis by serological and molecular techniques 
Aeromonas hydrophila has been identified by the gel-diffusion technique (Bullock, 1966), 
direct fluorescent antibody technique (Lewis and Allison, 1971), indirect fluorescent 
antibody technique (Lewis and Savage, 1972), immunoblotted sodium dodecylsulphate 
(SDS)-polyacrylamide gel electrophoresis (PAGE) (Mulla and Millership, 1993). 
However, these methods are of limited value, because many different serological types of 
A. hydrophila are distributed in fish farms (Eddy, 1960; Bullock, 1966). 
Deoxyribonucleic acid probe hybridization technology is available for the direct 
detection and identification of mycroorganisms. However, many common DNA 
fragments between A. hydrophila and A. salmonicida were reported by Miyata et al. 
(1995). Therefore, it is unlikely that this hybridization technique will be successful for 
this species. Cascón et al. (1996) found a specific PCR primer set for the detection of A. 
hydrophila hybridization group 1.  
 
8.5. Control 
 
Prevention 
Out breaks of the disease are usually associated with a change in environmental 
conditions. Stressors, including overcrowding, high temperature, a sudden change of 
temperature, rough handling, transfer of fish, low dissolved oxygen, poor nutritional 
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status and fungal or parasitic infection, contribute to physiological changes and heighten 
susceptibility to infection. Aeromonas hydrophila is widely distributed in the intestinal 
tract of cultured fish and the water and sediments of fresh water ponds which are rich in 
organic materials. Virulent strains of A. hydrophila in these environments are possible 
sources of infection. Therefore, minimizing stressors, preventing overcrowding, using 
proper feeds, maintaining clean environment of ponds are important management 
practices to reduce A. hudrophila infection (Aoki, 1999; Cipriano and Austin, 2011).  
 
Chemotherapy 
Chemotherapeutic agents are used for the treatment of A. hydrophila in fish farms (Aoki, 
1992). Isolates of A. hydrophila have been found to be sensitive to chloramphenicol, 
florfenicol, tetracycline, sulphonamide, nitrofuran derivatives and pyridonecarboxylic 
acids (Aoki and Egusa, 1971; Endo et al., 1973; Katae et al., 1979; Fukui et al., 1987). 
Fluorinated analogue, tetracycline derivatives, nitrofuran derivatives, sulphonamide and 
pyrodonecarboxylic acids are effective in oral treatments (Austin and Austin, 1987). 
 
Vaccine 
Experimental vaccination for prophylaxis against infection of A. hydrophila has been 
examined (Stevenson, 1988). Fish immunized either intramuscularly or intraperitoneally 
with vaccine showed protection against challenge. The agglutinating antibody titre 
increased in the serum of immunized fish (Song et al., 1976; Ruangpan et al., 1986; 
Karunasagar et al., 1991). Immersion vaccination of channel catfish using polyvalent 
sonicated antigens of A. hydrophila provides protection (Thune and Plumb, 1982). 
Lamers et al. (1985) noted that agglutinating antibody was recognized in the serum of 
carp immunized with A. hydrophila bacterin, following a second immersion with this 
vaccine. Catfish immunized intraperitoneally by injection with the acid extract of the 
S-layer protein of A. hydrophila were protected from the homologus, virulent strain (Ford 
and Thune, 1992). Serological types of A. hydrophila are heterogeneous and polyvalent 
vaccine is thought to be necessary for prevention of the infection.  
 
8.6. Recent Topics 
 
Draft genome sequence of A. hydrophila SNUFPC-A8 which was isolated from a kidney 
of a moribund cherry salmon (Oncorhynchus masou masou) became available. The 
sequence data were assembled into 59 contigs and 300 singletons. The draft genome of A. 
hydrophila SNUFPC-A8 was 4,969,090 bp in length, and a total of 4,779 open reading 
flames were discovered (Han et al., 2013). A systematic analysis of the virulence factors 
based on this genome database will uncover the details of the disease caused by A. 
hydrophila.  
 
Glossary 
 
NaCl :  Sodium chloride,  

DNA :  Deoxyribonucleic acid,  

G + C :  Guanine plus cytosine,  

rDNA :  Ribosomal DNA,  
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ECP :  Extracelluar products,  

SDS-PAGE :  Sodium dodecylsulphate-polyacrylamide gel electrophoresis 
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