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Summary 
 
In many situations where manufacturing processes are present, as in those frequently 
found in food processing, or in everyday life situations, a series of energy exchanges 
occur between systems that entail thermal effects. These exchanges tend to alter the 
components involved, causing the cooling or heating of such, or generating or stopping 
of any reaction. These alterations or changes can be described in macroscopic form 
through the basic concepts of thermodynamics, defined as the area of science 
concerning energy exchanges among the components of a system or between a system 
and its surroundings. However, it is important to distinguish two sub-areas within the 
traditional concept of thermodynamics: thermophysics and chemical thermodynamics. 
The former area studies the modification of situations in which no changes exist in the 
chemical structure of the participants during energy exchanges, whereas chemical 
thermodynamics studies processes presenting structural changes due to chemical 
reactions. Knowledge of concepts, such as enthalpy, entropy, free energy, equilibrium, 
etc., is required in describing the thermal treatment and cooling processes in foods, 
functioning of equipment employed in such processes, characteristics of deterioration or 
preservation reactions presented in foods, and many other factors that appear in food 
engineering. These concepts form part of the basis of thermodynamics and will be 
presented next. 
 
1. Introduction 
 
The Industrial Revolution resulted in the development of a series of devices and 
machines, for example, the steam engine, internal combustion engine, and electrical 
engine. However, for many years the principles on which their functioning was based 
were not recognized. Thermodynamics surged in the middle of a search for solutions to 
problems present in the design of thermal machines. It is a branch of science related to 
energy exchange among the components of a system or between a system and its 
surroundings. 
 
Thermodynamics can be treated purely from the macroscopic point of view through 
established laws described in terms of system properties that can be macroscopically 
measured. This has been traditionally called classical thermodynamics. Another view of 
thermodynamics is based on the derivation of macroscopic behavior of the material 
through statistical analysis of the properties of atoms and molecules, generating what is 
known as statistical thermodynamics. 
 
When the thermal effects of an energy exchange between a system and its surroundings 
are studied, there is a possibility no changes will be generated in the chemical structure 
of the system. It is here the concepts of the thermodynamics branch, denominated as 
physical thermodynamics or thermophysics, are applied. On the other hand, when the 
above mentioned changes do appear, processes are described by chemical 
thermodynamics. 
 
Nevertheless, thermodynamics can be studied according to some fundamental laws. For 
example, the first law of thermodynamics allows the determination of how much energy 
exists in carbon, wood, steam, food, etc. The second law of thermodynamics deals with 
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the determination of how efficiently one form of energy can be transformed into 
another. It also determines which changes are possible or not. The combination of these 
laws leads to relationships that state how much work can be obtained under a given 
condition. 
 
Additionally, the so-called zero law and third law are useful, the former, to understand 
temperature measurement concepts, and the latter, to make thermodynamics participate 
in the analysis of reactions. 
 
Thermodynamics is the most powerful tool available to study natural phenomena. Many 
of the devices and systems used and controlled today by man base their functioning on 
the concepts contained in this science. 
 
Thermodynamics is directly related to the field of transport of phenomena disciplines, 
as in heat and material transfer. Thermodynamics plays a very important role in food 
engineering, for example, in the selection of the type of refrigerant used in a cooling 
system, in the humidity control of air, or in the final moisture content of a product. 
Many phase changes that appear during the processing or storage of food can be 
described through the principles of thermodynamics. Also, the heat requisites of a heat 
exchanger employed in pasteurization processes or the equilibrium composition of a 
multicomponent mixture being separated can be determined through thermodynamic 
analysis. Furthermore, it is possible to determine the degradation rate of a nutrient with 
the aid of chemical kinetics. These are some of the examples highlighting the 
importance of thermodynamics in food processing. 
 
The purpose of this discussion is to present, in a concise form, thermodynamic concepts 
and functions that serve as background for the study and comprehension of food 
engineering processes. 
 
2. Thermophysics 
 
2.1. Thermodynamic Concepts 
 
2.1.1. System 
 
A thermodynamic system is that part of the physical universe under consideration. A 
system is separated from the rest of the universe by limits or boundaries that can be 
physical or imaginary. Any region outside the system's limits is called surroundings. 
Thermodynamic systems are subjected to processes that imply material and/or energy 
exchanges with its surroundings. An open system exchanges mass and energy with its 
surroundings, as in food dehydration in a hot air dryer. In this process a clear heat flow 
moves from air to food and a mass flow (mainly water vapor) from food to air. On the 
other hand, a closed system only exchanges energy, keeping its mass constant, which in 
food engineering can be exemplified by a hermetically packed food subjected to 
sterilization or a cooling process. A system that does not exchange material or energy 
with its surroundings constitutes an isolated system, which from a practical point of 
view is rarely useful. A special case involving open systems is one in which there is a 
permanent or steady state flow. In this case, mass enters and leaves the system at the 
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same rate, such that the mass contained within the limits is constant at all times. A 
system is considered homogeneous if all of its properties are uniform at any point. 
Usually this is a one-phase system. A system with more than one phase is called 
heterogeneous. Practically all foods, whether subjected or not to a preservation process, 
are included within the last category. 
 
2.1.2. System Variables 
 
A system's thermodynamic variable or property is one of its defining characteristics. 
The properties are extensive if their magnitude is directly proportional to the system 
size, as are mass, volume, internal energy, enthalpy, entropy, etc. On the other hand, the 
properties are intensive when their magnitude is independent of size, as are temperature 
and pressure. The relationship between two extensive variables yields an intensive 
variable. For example, density is the relationship between the mass and volume of the 
system. The state of a system describes its condition. The values of the properties are 
used to characterize the system’s state, and it is important to note that those properties 
only depending on the system’s state, not on the way in which the system reached such 
a state, are denominated as state variables or state properties. Pressure (P), volume (V), 
and temperature (T) of a system, and many expressions of its energetic content are state 
variables. However, heat and work are not state variables, since they depend specifically 
on the way in which change from one state to another occurs. Any equation that relates 
state variables is a state equation, and it is important to note that few state variables are 
enough to define other variables. The most common variables present in a state equation 
are P, V, and T. 
 
2.1.3. State Equations for Ideal Gases 
 
In the case of gaseous systems, volume noticeably changes as a function of temperature 
and pressure. However, this variation is almost independent of the gas. Thus, to describe 
the relationship of the mentioned variables, an approximate state equation that describes 
the behavior of all gases has been proposed. This equation is known as the ideal or 
perfect gas equation, and is expressed as 
 

nRTPV =            (1) 
 
In this equation, R is the general constant of gases and n the number of moles of gas. 
 
When a determined quantity (n moles) of gas that behaves according to Equation (1), is 
subjected to a process where volume, temperature, or pressure change is present, and 
because the product nR is a constant, it follows that 
 

constant
T

PV
=           (2) 

 
Therefore, when the initial conditions of a gas ( 1T , 1P , and 1V ) are known, the gas 
properties under other conditions are as follows: 
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T
PV

=           (3) 

 
The ideal conditions presented in Equations (1) and (3) are used to describe the behavior 
of gases at conditions near those of the environment, which occurs in many food 
preservation processes or during its packaging. For this reason, such expressions can be 
very useful to Food Engineers. 
 
However, when temperature and pressure conditions deviate from environmental 
conditions, the gases tend to deviate from the ideal, thus they are called real gases. A 
state equation used to describe this behavior is one by Van der Waal, and is expressed 
as 
 

( ) nRTnbV
V
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⎤
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        (4) 

 
In this equation, a and b are constants that characterize each gas. Equations (1) and (4) 
are applied only to systems containing one component. For gas mixtures, the state 
equation depends on the concentration of each component. For perfect gases, the 
mixture equations are simple; thus, if gases do not react chemically in the mixture, the 
partial pressure of a component (i) becomes 

V
RTn

P i
i =            (5) 

 
The total pressure of the mixture is the sum of partial pressures, so 
 

V
RTn

PP total
itotal =∑=         (6) 

The partial pressure can be obtained from the total pressure and the molar fraction ( iX ) 
of each component as follows: 
 

totalii PXP =            (7) 
 

i

i
i n

n
X

∑
=           (8) 

 
In some food preservation processes (humidification, controlled atmospheres, etc.) the 
partial pressure is useful, since it is interesting to know the individual behavior of each 
component in a mixture. 
 
2.1.4. Thermodynamic Variables 
 
The energy participating in thermodynamic transformations is expressed in terms of 
heat (Q) and work (W). Q is the energy passing across the limits of a system due to a 
temperature difference between the system and its surroundings, and W is the energy 
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transfer associated with a force that is applied to the system along a distance. Internal 
energy (U) is a concept used to define the system energy not associated with work or 
heat, and is usually defined as an addition to all microscopic energy forms in the 
system. This type of energy is related to the structure and degree of molecular activity, 
and can be seen as the sum of kinetics and potential energies of the molecules. Entropy 
(S) is a variable that measures the number of possibilities or options for the system. The 
mathematical relationship between these thermodynamic variables allows the 
expression of the first and second law of thermodynamics. 
 
2.1.5. Thermodynamic Transformations 
 
 

 
 

Figure 1: Two thermodynamics cycles. 
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Whenever a system changes from one thermodynamic state to another, a process occurs. 
When a system returns to its initial state after experiencing a consecutive series of 
processes, it is said to have described a thermodynamic cycle. Figure 1 shows two 
thermodynamic cycles, in which the variables changing in the system  are pressure and 
volume. In this way, a process is called isocoric when the volume of the system remains 
constant (ΔV = 0), which in Figure 1 is represented by stages 2 to 3 and 4 to 1 in the 
four-stage cycle. On the other hand, the process is called isothermal when the 
temperature of the system remains constant (ΔT = 0), and isobaric when the process 
occurs at constant pressure (ΔP = 0). Additionally, if the process does not give place to 
thermal interactions, it is denominated as adiabatic (Q = 0). Finally, it is said that a 
system reaches a thermodynamic equilibrium state when its thermodynamic properties 
remain invariable over time. This equilibrium condition is difficult to reach in many 
food systems, whether fresh or processed. However, for practical purposes, such 
equilibrium is usually considered in the design of processing systems or in the selection 
of storage conditions. 
 
2.2. Zero Law of Thermodynamics  
 
It is traditional to discuss the three fundamental laws of thermodynamics. However, the 
so-called zero law exists, which was formulated by R. H Fowler in 1931, and although 
obvious, it is essential in describing thermal equilibrium concepts. 
 
Thus, when a body contacts another body with different temperature, heat from the one 
having the highest temperature is transferred to the one with the lowest, until both reach 
the same temperature. Heat transfer stops at this point and it is said that both have 
reached thermal equilibrium. Thus, it can be understood that temperature equality is the 
only requirement for thermal equilibrium. In this way, the zero law of thermodynamics 
states that if two bodies are in thermal equilibrium with a third body, they are in 
equilibrium with each other. These simple concepts, which are not considered in other 
thermodynamic laws, are the basis behind temperature measurement systems and a 
fundamental principle in many food preservation processes in which heat is transferred 
from or to the food, as in pasteurization, refrigeration, and freezing. 
 
2.3. Thermodynamic Equilibrium 
 
As mentioned in section 2.1.2., a chemical or food system can be macroscopically 
described according to a set of thermodynamic variables, which can be considered 
coordinates that define the system’s state. When these coordinates are modified for 
some circumstance, whether spontaneously or due to external actions, it is said that the 
system experiences a state change. It is important to note that these alterations do not 
represent phase changes (solid to liquid, liquid to gas, etc.). 
 
Usually, when the state of a system is modified interactions between the system and its 
surroundings take place, which can originate mechanical, chemical, or thermal non-
equilibrium conditions. 
 
If a lack of equilibrium of forces does not exist inside a system, including between the 
system and its environment, it is said that the system is under a mechanical equilibrium 
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state. When these conditions are not complied with, whether in the system alone or the 
system and its surroundings, the system experiences a state change, which will only stop 
when the mechanical equilibrium is reached again. 
 
On the other hand, if a system under mechanical equilibrium tends not to experience 
spontaneous change in its internal structure, as a chemical reaction or mass transfer 
from one part of the system to another (e.g., diffusion or solution), although it can be 
slow (as happens in many processed foods), it is said to be under a chemical equilibrium 
state.  
 
A system not under chemical equilibrium suffers a state change, which in some cases is 
very slow. Change stops when chemical equilibrium is reached again. 
 
The possibility of thermal equilibrium and its importance in food processing was 
commented on in section 2.2. However, it is important to understand that in this type of 
equilibrium the entire system has the same temperature, which is equal to that of the 
environment. 
 
When conditions are met for the three types of equilibrium, mechanical, chemical, and 
thermal, the system is said to present thermodynamic equilibrium, and under these 
conditions will not exhibit a tendency toward change of state, neither in the system nor 
in the surroundings.  
 
Thus, thermodynamic equilibrium states can be described in terms of macroscopic 
coordinates, without time intervention, meaning as a function of thermodynamic 
variables.  
 
Classic thermodynamics does not deal with problems in which the velocity of the 
process intervenes. Investigation of such problems is performed through other science 
branches (chemical kinetics, hydrodynamics, and kinetics theory of gases, among 
others) that, when related to thermodynamics, are essential to understanding the many 
changes and reactions that occur in foods during handling and processing. 
 
A process that tends to drive a system not in equilibrium to an equilibrium state is called 
an irreversible or natural process. Irreversible modifications are the only changes that 
occur in reality, which justifies their alternate name (natural changes).  
 
In an isolated system, the original state cannot be re-established after a natural change, 
while in a non-isolated system the original state can be restored, but only through an 
irreversible change in some other system. 
 
If change occurs in such way that the system remains in equilibrium, it will be carried 
out in an extremely slow manner and will be capable of generating the maximum work 
quantity. This idealized process is called reversible change. On the other hand, as 
demonstrated in section 2.7., a system absorbs the maximum quantity of heat from its 
surroundings and gives the maximum quantity of work to the environment during a 
reversible change. A natural process absorbs less heat and makes less work than does a 
reversible process. 
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