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Summary 
 
Daily life provides examples of liquids and semi-liquid foods whose complex structures 
produce a large variety of flow patterns when processed or eaten. In order to predict and 
design the food operations involving the deformation and flow of liquids and semi-
liquid foods, it is necessary to know the properties of materials characterizing these 
fluids. Rheology, the science that studies the deformation and flow of materials, is used 
for the determination of these material properties. From a rheological point of view, 
flows that are pertinent to processing and consumption of food materials can be 
classified as shear and elongational flows. Shear flows are commonly used to determine 
the rheological properties of liquid and semi-liquid foods (see Newtonian and Non-
Newtonian Flow). However, quite often foods exhibit elongational flow behaviors that 
cannot be explained on the basis of properties measured by standard, shear-based 
viscometers. The remarkable stability of cheese strings to stretching is a striking 
illustration of these behaviors. Additionally, shear based viscometers may exhibit 
problems and artifacts when used with samples that experience slippage or have shear 
dependent structures. 
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The importance of elongational flows in the case of semi-liquid foods arises because 
many food operations predominantly involve an elongational mode of deformation or a 
combination of shear and elongational flow. Common examples include atomization of 
liquids during spray drying, die swelling of food materials during extrusion, rolling and 
sheeting of dough, flaking of cereals, and oven expansion of dough during baking, to 
name a few (see Extrusion). 
 
Squeezing flow viscometers are inexpensive devices that enable the measurement of 
elongational properties of semi-liquid foods. Although several geometries can be 
utilized, in conventional squeezing flow viscometry, the material being tested is placed 
between two circular parallel plates and compressed by the vertical motion of one of the 
plates. With careful choice of experimental settings, the flow and resulting kinematics 
can be closely controlled so the material experiences only elongational flow. The 
evolution of the compressive stress and the separation between plates are closely 
monitored to provide an accurate measure of the materials behavior during the test. The 
measured compressive stress and the elongation of the material determined from the 
separation between plates are then used to evaluate the elongational properties of the 
material. Squeezing flow viscometers can be used as an alternative to conventional 
shear based viscometers, in particular, when the measurements exhibit slippage and 
when the structure of the food material is so weak that the material is damaged during 
the loading of the sample in the viscometer. Lubricated squeezing flow rheometry can 
get around these problems, firstly, because the slippage phenomenon is not only 
recognized, but also incorporated in the calculations and, secondly, because through 
careful setting of the test the sample is minimally disturbed during loading in the 
viscometer. 
 
The last decade has seen a rapid growth in the use of squeezing flow viscometry. This 
review presents the basic considerations that must be taken into account in designing 
and interpreting squeezing flow experiments. It provides an overview of the 
applications of squeezing flow viscometry to characterize the elongational properties of 
foodstuffs and finally shows the considerable progress that has been made up to the 
present in the use of this technique. 
 
1. Squeezing and Elongational Flow in Fluid Foods 
 
Elongational flow is a phenomenon that has been extensively studied in the polymer 
science area, given its importance in polymer processing, notably in operations such as 
film blowing and plastic extrusion. Elongational flow is also present in a number of 
food operations, for example, in puffing, food extrusion, and baking. However, studies 
of this flow and how it relates to food process operations have been scarce in 
comparison. As an important aspect of food process engineering, in the last decade, 
there has been a growing interest to determine and understand the response of liquid and 
semi-liquid foods to elongational flow. As an answer to this necessity, lubricated 
squeezing flow has stood out as a useful technique. In the food rheology area, lubricated 
squeezing flow has been used mainly as a means to determine rheological properties of 
semi-liquid foods that are pertinent to this type of flow. Squeezing flow viscometry also 
gets around a number of problems and artifacts that traditional shear-based viscometers 
have when applied to food products. 
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Squeezing flow viscometry encompasses a variety of configurations, however, all share 
a common feature, that is, the sample is compressed vertically between two plates to 
induce a horizontal flow. The flow pattern during the fluid squeezing can be classified 
as being "frictional" or "lubricated". Frictional flow is induced when there is good 
contact between the sample and the plates through friction. The flow is a mix of shear 
and elongational flow produced by the stretching of the material when it is squeezed out 
of the plates due to the squeezing action. Lubricated flow is induced when the plates are 
lubricated intentionally or by the sample itself due to slippage. Thus, the flow patterns 
developed by the squeezing flow viscometry are dependent on whether there is 
lubrication or friction. These flow patterns are described by the so-called kinematics of 
the flow. Knowledge of the squeezing flow kinematics is of importance in squeezing 
flow viscometry because it allows one to develop the mathematical equations used for 
the analysis and interpretation of squeezing flow data. 
 
Kinematics for lubricated and frictional squeezing are introduced in section 2, and the 
working equations used to estimate the properties of food materials in section 3. 
Additionally, a comprehensive list of foods for which squeezing flow viscometry has 
been successfully applied as well as shortcomings that arise during its application are 
also discussed in section 3. As a conclusion, an outline of the future of this rheological 
method in the food area is given. 
 
2. Foundations of Squeezing Flow Viscometry 
 
The mechanical properties of semi-liquid foods are very complex. The first step in 
characterizing these properties is to study how the material behaves in simple flows 
where the velocity field is precisely defined, so that the stresses resulting from the flow 
can be calculated. The relationship between these stresses and the velocity field or 
variables derived from it, notably the rate of strain, is known as the rheological 
constitutive model of the material (see Rheological Constitutive Equations). Knowledge 
of a material’s rheological constitutive model is of relevance to processing operations 
associated with the flow or deformations of the material. In fact, if a rheological 
constitutive model is known, it can be used to predict the stresses resulting from the 
fluid flow. Viscometry can be regarded as a methodology to characterize the mechanical 
properties of materials, that is, to determine the material’s rheological constitutive 
model. Flows used to determine the rheological constitutive model of a fluid material 
are known as viscometric flows. The most commonly used viscometric flow in 
viscometry is the shear flow, and the instruments used to produce shear flows are the 
capillary and rotational viscometers (see Newtonian and Non-Newtonian Flow). In the 
capillary viscometer, the pressure drop along a capillary is measured and used to 
calculate the shear stress at the capillary wall, whereas the other rheological variable of 
importance, the shear rate at the wall, is calculated from measurements of the 
volumetric flow rate through the capillary. Once shear stresses and shear rates are 
determined, they can be used to find out the rheological constitutive model for the 
material. In rotational viscometers, different types of geometrical surfaces are used to 
generate the shear flow, notably concentric cylinders, cone-and-plate, and parallel 
plates. The tested material is placed between the two surfaces forming the sensor. The 
shear flow is developed by the friction between the rotating component of the sensor 
and the fluid. The torque necessary to rotate the moving component at a constant 
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rotational speed is measured and used to calculate the shear stress applied to the fluid, 
whereas the rotational speed is used to estimate the shear rate. As in capillary 
viscometry, the rheological constitutive equation of the material is found from the ratio 
between measured shear stresses and shear rates. Despite the wide applicability of these 
viscometers to the determination of rheological properties of food and non-foods fluids, 
they may exhibit serious shortcomings that may affect the measurements and the 
analysis of the data. These shortcomings are mainly related to slippage of the tested 
material at the sensor surfaces and the loading of the sample in the instrument. 
 
The main hypothesis behind the utilization of viscometric shear flows is that the food 
sample is indeed sheared. Therefore, the application of a well-defined shear flow during 
the test is a necessary condition not only to perform the rheological test but also to 
estimate shear stresses, shear rates, and the materials rheological model. The application 
of shear implies there is no slippage between the sensor surfaces and the tested fluid. 
This assumption is satisfied for many fluid foods but there are notable exceptions, in 
particular, food suspensions and materials containing large amounts of fat, for which the 
non-slip condition cannot be taken for granted. Many semi-liquid foods materials are 
multi-component and multiphase concentrated suspensions, and the particles in these 
suspensions tend to migrate away from the wall forming a dilute layer that operates as a 
thin film of lubricant. The resulting flow is then shifted to a plug flow instead of the 
expected fully developed shear flow upon which calculations are based. A similar effect 
is produced when the food is self-lubricated through oil exudation, as occurs for 
example with butter and peanut butter. When slippage occurs the assumed shear flow is 
significantly altered and the application of the equations developed for shear-based 
viscometric flows are no longer valid. Therefore, for this type of food material, 
measurements based on shear flow may not reflect their true rheological properties. 
 
The equations utilized to calculate the shear stress and shear rates in shear flows impose 
several geometrical restrictions on the sensor system utilized. One is that the gap in 
which the material is sheared needs to be small. This creates practical problems when 
semi-liquid food materials are tested. In many cases, semi-liquid foods contain particles 
and the size of these particles are of the same order of magnitude as the gaps used, 
rendering the assumption of shear flow and the rheological measurement inadequate. 
Additionally, to load the specimen into the measuring system, almost without exception, 
it must be pressed into small capillary tubes or the narrow gap between concentric 
cylinders, parallel plates, or cone and plate geometries. Thus, the application of 
capillary or rotational viscometry to fragile food structures or food materials whose 
structure are shear dependent, such as yogurt or tomato paste, to name a few, is, to say 
the least, troublesome. Merely mounting the specimen may destroy its original internal 
structure and modify its rheological properties even before tested. 
 
In addition, there are large qualitative differences between the mode in which foods 
containing long molecules behave in flows (where the molecules are strongly stretched) 
and the mode in which those foods behave in shear flows. Hence, it is worthwhile to 
search for practical methods that measure these stretching or elongational properties. 
Naturally, elongational properties cannot be measured by shear-based viscometers. 
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A way to avoid slippage and sample loading problems, along with the added benefit of 
measuring elongational properties, is to use squeezing flow viscometry. In squeezing 
flow viscometers, the food sample is placed in the gap formed between two plates and a 
vertical force is applied to cause the fluid in the gap to be horizontally squeezed out. 
Experiments are mainly performed at either constant squeezing speed or constant 
squeezing load. When the fluid fills the space between the two plates, the test can be 
considered as one with a constant compression area (constant area). Conversely, if the 
tested fluid occupies only a portion of the space between the plates, the experiment is 
one in which the volume is kept constant during the test (constant volume). Typical 
testing configurations are illustrated in Figure 1, which shows the sample confined 
between two large coaxial plates and subjected to a prescribed vertical motion of the 
plates (velocity V) or to a prescribed load (F). 
 

 
 

Figure 1. The basic test configurations utilized in squeezing flow viscometry with 
parallel plates as a sensor. 

 
Figure 1 clearly shows that if the sample is gently transferred to the bottom surface and 
the upper plate is slowly moved until it touches the sample, the sample will be subjected 
to very little damage and can be tested practically intact. An additional advantage of 
squeezing flow viscometry over coaxial or capillary methods is that it allows testing of 
foods that contain large particles, provided the particles are no larger than the final 
height of the specimen. Mustard with seeds and refried beans are examples of such 
foods, which were tested using lubricated squeezing flow viscometry. 
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For food materials that exhibit slippage, the use of squeezing flow viscometry with 
lubricated plates is a good alternative, because the existence of slip or self-lubrication is 
not only acknowledged, it is also incorporated in the calculation of the properties. 
 
Hence, squeezing flow viscometry is a rheological technique based on either pure 
elongational flow or a mixed shear and elongational flow. If the food sample slips at the 
solid surfaces due to the presence of a lubricating layer, the kinematics of the test will 
be governed by an elongational flow. Conversely, if the material sticks to the surfaces, 
the presence of friction will induce a shear flow, which is analyzed considering a 
balance between the squeezing force and the forces that oppose the flow due to the 
sample shear viscosity. 
 
- 
- 
- 
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