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Summary 
 
Constitutive modeling of food polymeric materials is useful in predicting the 
rheological behavior of food materials over a wide range of strain rates. The rheological 
behavior is directly related to food quality attributes such as texture, mouth feel, 
stability, etc. The rheological models chosen here to study food polymers are those 
commonly used to model general polymeric systems. These include several different 
types of rheological models, such as the integral and differential viscoelastic models, 
and those derived from dilute solution theories, concentrated dispersion theories, etc. 
The use of such models is discussed with real food systems. The experimental data for 
the food systems were obtained in the author’s laboratory over the last two decades. 
 
1. Introduction 
 
Models able to describe the behavior of materials in all components of stress, strain, and 
strain rates are called “constitutive models”. Constitutive models are often derived from 
fundamental molecular theories. Therefore, by relating rheological measurements to 
molecular structures and conformations of food polymers and food systems, one can use 
appropriate constitutive models to predict the rheological behavior over a wide range of 
strain rates.  
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Food systems are often polymeric materials consisting of long chain molecules, such as 
starch, proteins, lipids, polysaccharides, and other macromolecules. A typical 
approximation of a polymeric system is to consider the polymer molecules as a freely 
jointed chain consisting of springs and beads. Such approximations can help understand 
the deformations that occur during the processing of foods, which are generally a 
combination of shear and extensional flows. Examples include dough sheeting, 
extrusion (see Extrusion), mixing processes (see Food Mixing) and other unit operations 
common to the food industry. 
 
The various constitutive models and their basis are discussed along with examples 
illustrating the use of constitutive models in predictive rheology. 
 
2. Linear Viscoelasticity 
 
Linear viscoelasticity is observed at small deformations where the polymeric material is 
negligibly disturbed from its equilibrium state (see Viscoelasticity). The shear relaxation 
modulus G(t, ογ ) is one of the rheological properties used to characterize linear 
viscoelastic materials and is independent of the applied strain in the linear viscoelastic 
region: 
 

( )( , ) tG t ο
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γ

=   (1) 

 
( )tσ  is the time dependent shear stress resulting from the applied deformation ογ . In 

uniaxial extension, the tensile relaxation modulus is given by: 
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where 11( )σ  is the extensional stress and οε  the extensional strain. In developing linear 
constitutive models, the "Boltzmann superposition principle” is used, which assumes 
one can simply superimpose stresses resulting from strains at different times and vice 
versa. This principle is shown mathematically as: 
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where ( )itδγ  is the incremental strain applied at time it  and ( )iG t t−  a function that 
links stress and strain behavior. The integral form of this equation when δγ→0 is: 
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The measured relaxation modulus as a function of time can then be simulated using a 
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single element or a generalized multiple-element Maxwell model. The shear relaxation 
modulus for a single element is given by: 
 

( ) exp( / )oG t G t λ= −  (5) 
 
And the linear constitutive model is given by: 
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When the data needs more adjustable parameters, the generalized Maxwell model given 
below is used: 
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where Gk and λk are the appropriate moduli and relaxation times of the Maxwell 
element. Figure 1 shows the mechanical analog of the generalized Maxwell model.  
 

 
 

Figure 1. A mechanical analog of the generalized Maxwell model. 
 

 
 

Figure 2. Linear and nonlinear shear relaxation moduli for 18.8% protein flour dough. 
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The behavior of the relaxation modulus over sufficiently long periods will be dominated 
by the relaxation time with the largest value and is called the "longest relaxation time" 
or "terminal relaxation time." Simulation of the relaxation modulus using the 
generalized Maxwell model for wheat flour dough is shown in Figure 2. 
 
Small amplitude oscillatory measurements are also commonly used to characterize 
linear viscoelastic properties. The following equations are used for the storage and loss 
modulus when a generalized Maxwell model is used to simulate linear viscoelastic 
behavior. 
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3. Dilute Solution Theories 

 
For linear high molecular weight food polymers in dilute solutions such as tomato 
pectins and alginates, the Rouse and Zimm theories provide a basis for quantitative 
predictions of linear viscoelastic properties. 
 
The Rouse model is based on the assumption that large polymer molecules can be 
simulated using straight segments that act as simple linear elastic springs. The springs 
are connected by beads, which give rise to viscous resistance. The combination of 
elastic and viscous effects causes viscoelastic behavior. The equations to predict the 
reduced storage and loss moduli and relaxation time of flexible random coil molecules 
of the Rouse and Zimm type are given below: 
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where [G’]R is the reduced storage modulus given by: 
 

'[ ']R
G MG
CRT

=  in the limit c->0. (12) 

 
where G’ is the storage modulus of the dilute solution, M the molecular weight, C the 
concentration, R the ideal gas constant, and T the absolute temperature. The reduced 
modulus [G”]R is then given by: 
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where ηs is the solvent viscosity, ω the frequency of oscillation, and G” the loss 
modulus. The relaxation time necessary to calculate the reduced storage and loss moduli 
is given as follows: 
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where [η] is the intrinsic viscosity of the solution. The theories of Rouse and Zimm 
were used to study the conformation of apple, tomato, and citrus pectins in solution, 
including sodium alginate and propylene glycol alginate.  
 
Estimation of intrinsic moduli [G'] and [G"] necessitates measurement of the storage 
modulus G' and the loss modulus G" at several concentrations in the dilute solution 
region and then extrapolation to zero concentration.  
 
Small amplitude oscillatory measurements were conducted in 0.25 M NaCl to achieve 
maximum dissociation between chains in 95 percent glycerol and 5 percent de-ionized 
water mixtures as the solvent. 
 
The reduced moduli were then calculated from intrinsic moduli by taking molecular 
weights and temperature into account. The longest relaxation time was calculated using 
the Rouse approximation: 
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where [η] is the intrinsic viscosity, ηs the solvent viscosity, M the molecular weight, 
and T the absolute temperature. Experimental reduced moduli are compared with 
predictions of the Rouse and Zimm models (Figures 3a, 3b and Figures 4a, 4b).  
 
- 
- 
- 
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